Molecular Dynamics Simulation of Thermal Properties of Au3Ni Nanowire

The aim of this research was to calculate the thermal properties of Au3Ni Nanowire. The molecular dynamics (MD) simulation technique was used to obtain the effect of radius size on the energy, the melting temperature and the latent heat of fusion at the isobaric-isothermal (NPT) ensemble. The Quantum Sutton-Chen (Q-SC) many body interatomic potentials energy have been used for Gold (Au) and Nickel (Ni) elements and a mixing rule has been devised to obtain the parameters of these potentials for nanowire stats. Our MD simulation results show the melting temperature and latent heat of fusion increase upon increasing diameter of nanowire. Moreover, the cohesive energy decreased with increasing diameter of nanowire.




References:
[1] M. Nicholas, et al., "Ultrahigh-density nanowire lattices and circuits,"
Science, vol. 300, pp. 112-115, Apr. 2003.
[2] Y. Huang, X. Duan, and C. M. Lieber, "Nanowires for integrated
multicolor nanophotonics," Small, vol. 1, pp. 142-147, Jan. 2005.
[3] Y. Wu, R. Fan, and P. Yang, "Block-by-block growth of singlecrystalline
Si/SiGe superlattice nanowires," Nano Lett., vol. 2, pp. 83-
86, Jan. 2002.
[4] H. Yan, S. H. Park, G. Finkelstein, J. H. Reif, and T. H. LaBean, "DNAtemplated
self-assembly of protein arrays and highly conductive
nanowires," Science, vol. 301, pp. 1882-1884, Sep. 2003.
[5] S. J. A. Koh, H. P. Lee, C. Lu, and Q. H. Cheng, "Molecular dynamics
simulation of a solid platinum nanowire under uniaxial tensile strain:
temperature and strain-rate effects," Phys. Rev. B, vol. 72, pp. 085414:1-
11, Aug. 2005.
[6] J. Zhou, C. Jin, J. H. Seol, X. Li, and L. Shi, "Thermoelectric properties
of individual electrodeposited bismuth telluride nanowires ," Appl. Phys.
Lett., vol. 87, pp. 133109:1-3, sep. 2005.
[7] L. Li, Y. Zhang, Y. W. Yang, X. H. Huang, G. H. Li, and L. D. Zhang,
"Diameter-depended thermal expansion properties of Bi nanowire
arrays," Appl. Phys. Lett., vol. 87, pp. 031912-031915, Jul. 2005.
[8] J. I. Pascual, et al., "Properties of metallic nanowires: from conductance
quantization to localization," Science, vol. 267, pp. 1793-1795, Mar.
1995.
[9] T. M. Whitney, J. S. Jiang, P. C. Searson, and C. L. Chien, "Fabrication
and magnetic properties of arrays of metallic nanowires," Science, vol.
261, pp. 1316-1319, Jul. 1993.
[10] C. A. Huber, et al., "Nanowire array composites," Science, vol. 263, pp.
800-802, Feb. 1994.
[11] Q. XU, et al., "Synthesis of AuNi/NiO nanocables by porous AAO
template assisted galvanic preposition and subsequent oxidation," Eur. J.
Inorg. Chem., vol. 2010, pp. 4309-4313, Sep. 2010.
[12] E. Anglada, J. A. Torres, F. Yndurain, and J. M. Soler, "Formation of
gold nanowires with impurities: a first-principles molecular dynamics
simulation," Phys. Rev. Lett., vol. 98, pp. 096102-096106, Feb. 2007.
[13] X. Y. Zhang, L. D. Zhang, Y. Lei, L. X. Zhao, and Y. Q. Mao,
"Fabrication and characterization of highly ordered Au nanowire
arrays," J. Mater. Chem., vol. 11, pp. 1732-1734, Apr. 2001.
[14] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola,
and J. R. Haak, "Molecular dynamics with coupling to an external bath,"
J. Chem. Phys., vol. 81, pp. 3684-3690, Jun. 1984.
[15] J. M. Haile, Molecular Dynamics Simulation, John Wiley & Sons, New
York, 1992, pp. 138.
[16] H. H. Kart, M. Tomak, M. Uludogan, and T. Cagin, "Thermodynamical
and mechanical properties of Pd-Ag alloys," Comput. Mat. Sci., vol. 32,
pp. 107-117, Jan. 2005.
[17] Y. Qi, T. Cagin, Y. Kimura, and W.A. Goddard, "Molecular-dynamics
simulation of glass formation and crystallization in binary liquid metals:
Cu-Ag and Cu-Ni," Phys. Rev. B, vol. 59, pp. 3527-3533, Feb. 1999.
[18] W. G. Hoover, "Canonical dynamics: equilibrium phase-space
distributions," Phys. Rev. A, vol. 31, pp. 1695-1697, Mar. 1985.
[19] S. Nose, "A unified formulation of the constant temperature molecular
dynamics methods," J. Chem. Phys., vol. 81, pp. 511-519, Jul. 1984.
[20] A. P. Sutton, J. B. Pethica, H. Rafii-Tabar, and J. A. Nieminen,
"Mechanical properties of metals at the nanometer scale," in Electron
theory in alloy design, D. G. Pettifor, and A. H. Cottrell, Ed. Institute of
Materials, The Alden Pres, Oxford, 1992, pp. 191-233.