Modeling and Investigation of Volume Strain at Large Deformation under Uniaxial Cyclic Loading in Semi Crystalline Polymer

This study deals with the experimental investigation and theoretical modeling of Semi crystalline polymeric materials with a rubbery amorphous phase (HDPE) subjected to a uniaxial cyclic tests with various maximum strain levels, even at large deformation. Each cycle is loaded in tension up to certain maximum strain and then unloaded down to zero stress with N number of cycles. This work is focuses on the measure of the volume strain due to the phenomena of damage during this kind of tests. On the basis of thermodynamics of relaxation processes, a constitutive model for large strain deformation has been developed, taking into account the damage effect, to predict the complex elasto-viscoelastic-viscoplastic behavior of material. A direct comparison between the model predictions and the experimental data show that the model accurately captures the material response. The model is also capable of predicting the influence damage causing volume variation.

Authors:



References:
[1] F. ADDIEGO, A. DAHOUN, C. G-SELL, JM. HIVER. Characterization
of volume strain at large deformation under uniaxial tension in highdensity
polyethylene. Polym. Vol. 47, pp. 4387-4399, 2006.
[2] S. CASTAGNET, Y. DEBURCK. Relative influence of microstructure
and macroscopic triaxiality on cavitation damage in semi-crystalline
polymer. Mater. Sci. Eng., A. 448, pp. 56-66, 2007.
[3] C. G'SELL, S.L. BAI, J.M. HIVER. Polypropylene/polyamide
6/polyethylene-octene elastomer blends. Part 2: volume dilatation
during plastic deformation under uniaxial tension. Polym., vol. 45, pp.
5785-5792, 2004.
[4] A. D. Drozdov, J. deC. Christiansen. Cyclic viscoplasticity of highdensity
polyethylene: Experiments and modeling. Computational
Materials Science, vol. 39, pp. 465-480, 2007.
[5] Kamel Hizoum, Yves Re'mond, Stanislav Patlazhan. Coupling of
Nanocavitation With Cyclic Deformation Behavior of High-Density
Polyethylene Below the Yield Point. Journal of Engineering Materials
and Technology, vol. 133, pp. 1-5, 2011.
[6] A. D. Drozdov, J. deC. Christiansen. Cyclic viscoplasticity of highdensity
polyethylene/montmorillonite clay nanocomposite. European
Polymer Journal, vol. 43, pp. 10-25, 2007.
[7] C. G'SELL, J.M. HIVER, A. DAHOUN, A. SOUAHI. Video-controlled
tensile testing of polymers and metals beyond the necking point. J.
Mater. Sci., vol. 27, pp. 5031-5039, 1992.
[8] C. G'SELL, J.M. HIVER, A. DAHOUN. Experimental characterization
of deformation damage in solid polymers under tension, and its
interrelation with necking. International Journal of solids and structures.
Vol. 39, pp. 3857-3872, 2002.
[9] C. CUNAT. Approche statistique des propriétés thermodynamiques des
états liquides et vitreux - Relaxation des liquides et transition vitreuse -
Influence des associations chimiques, Thèse, Nancy I, France, 1985.
[10] C. CUNAT. A thermodynamic theory of relaxation based on a
distribution of non-linear processes, J. Non-Crystalline Solids vol.
131/133, pp. 196-199, 1991.
[11] C. CUNAT. The DNLR approach and relaxation phenomena: Part I -
Historical account and DNLR formalism. Mech. of Time-Depend.
Mater. Vol. 5, pp. 39-65, 2001.
[12] T. DE DONDER. Thermodynamic theory of affinity: A Book of
principle. Oxford, England, Oxford University Press, 1936.
[13] I. PRIGOGINE. Introduction à la Thermodynamique des Processus
Irréversibles, Dunod, Paris, 1968.
[14] M. ABOULFARAJ, C. G-SELL, B. ULRICH, A. DAHOUN. In situ
observation of the plastic deformation of polypropylene spherulites
under uniaxial tension and simple shear in the scanning electron
microscope. Polym. Vol. 36, pp. 731-742, 1995.
[15] K. SCHNEIDER, S. TRABELSI, N. E. ZAFEIROPOULOS, R.
DAVIES, Chr. RIEKEL, M. STAMM. The study of cavitation in HDPE
using time resolved synchrotron X-ray scattering during tensile
deformation. Macromol. Symp., vol. 236, pp. 241-248, 2006.
[16] K. NITTA, M. TAKAYANAGI. Tensile yield of isotactic polypropylene
in terms of a lamellar-cluster model. J. Polym. Sci., vol. 38, pp. 1037-
1044, 2000.
[17] A. PAWLAK. Cavitation during tensile deformation of high-density
polyethylene. Polym., vol. 48, pp. 1397-1409, 2007.
[18] S. CASTAGNET, Y. DEBURCK. Relative influence of microstructure
and macroscopic triaxiality on cavitation damage in semi-crystalline
polymer. Mater. Sci. Eng., A. 448, pp. 56-66, 2007.
[19] E. ROGUET, S. CASTAGNET, J.C. GRANDIDIER. Mechanical
features of the rubbery amorphous phase in tension and torsion in a
semi-crystalline polymer. Mechanics of Materials, vol. 39, pp. 380-391,
2007.
[20] K.MARABET. Comportement mécanique en grandes déformations du
Polyéthylène haut densité : Approche thermodynamique de l-état relaxé.
Thèse, INPL, 2003.
[21] E. F. TOUSSAINT, Z. AYADI, P. PILVIN, C. CUNAT. Modeling of
the Mechanical Behavior of a Nickel Alloy by Using a Time-Dependent
Thermodynamic Approach to Relaxations of Continuous Media. J.
Mech. of Time-Depend. Mater. Vol. 5, pp. 1-25, 2001.
[22] R. ARIEBY, R. RAHOUADJ, C. CUNAT. Caractérisation mécanique et
modélisation thermodynamique du comportement anisotrope du
polyéthylène ├á haute densité. Intégration des effets d'endommagemen.
CFM 2009.
[23] E.M. ARRUDA, M.C BOYCE. A three-dimensional constitutive model
for the large stretch behaviour of rubber elastic materials », J. Mec.
Phys. Solids, vol. 41, pp. 389-412, 1993.