Mapping of Solar Radiation Anomalies Based on Climate Change

The use of alternative energy sources to meet energy demand reduces environmental damage. To diversify an energy matrix and to minimize global warming, a solar energy is gaining space, being an important source of renewable energy, and its potential depends on the climatic conditions of the region. Brazil presents a great solar potential for a generation of electric energy, so the knowledge of solar radiation and its characteristics are fundamental for the study of energy use. Due to the above reasons, this article aims to verify the climatic variability corresponding to the variations in solar radiation anomalies, in the face of climate change scenarios. The data used in this research are part of the Intercomparison of Interconnected Models, Phase 5 (CMIP5), which contributed to the preparation of the fifth IPCC-AR5 report. The solar radiation data were extracted from The Australian Community Climate and Earth System Simulator (ACCESS) model using the RCP 4.5 and RCP 8.5 scenarios that represent an intermediate structure and a pessimistic framework, the latter being the most worrisome in all cases. In order to allow the use of solar radiation as a source of energy in a given location and/or region, it is important, first, to determine its availability, thus justifying the importance of the study. The results pointed out, for the 75-year period (2026-2100), based on a pessimistic scenario, indicate a drop in solar radiation of the approximately 12% in the eastern region of Rio Grande do Sul. Factors that influence the pessimistic prospects of this scenario should be better observed by the responsible authorities, since they can affect the possibility to produce electricity from solar radiation.





References:
[1] Buriol, G. A.; Estefanel, V.; Heldwein, A. B.; Prestes, S. D.; Horn, J. F. C. Estimativa da radiação solar global a partir dos dados de insolação, para Santa Maria - RS. Ciência Rural, v. 42, p. 1563-1567, 2012.
[2] Freitas, S. S. A. Dimensionamento de sistemas fotovoltaicos. Bragança: ESTIG, Dissertação de Mestrado em Engenharia Industrial. 2008.
[3] Gross, J. A. Índice de Anomalia de Chuva (IAC) dos municípios do Rio Grande do Sul afetados pelas estiagens no período de 1991 a 2012. Dissertação de Mestrado. Universidade Federal de Santa Maria. 2015.
[4] Lima, R. A. A produção de energias renováveis e o desenvolvimento Sustentável: uma análise no cenário da mudança do clima. Energy Law in Brazil Vol 5 ano 4, Jan – Jul 2012.
[5] Le Treut, H., R. Somerville, U. Cubasch, Y. Ding, C. Mauritzen, A. Mokssit, T. Peterson AND M. Prather, 2007: Historical Overview of Climate Change. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth assessment Report of the Intergovernmental Panel on Climate Change (Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
[6] Silveira, Cleiton Da Silva et al . Mudanças climáticas na bacia do rio São Francisco: Uma análise para precipitação e temperatura. RBRH, Porto Alegre, v. 21, n. 2, p. 416-428, June 2016. Available from <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S2318-03312016000200416&lng=en&nrm=iso>. access on 11 Mar. 2017. http://dx.doi.org/10.21168/rbrh.v21n2.p416-428.
[7] Sousa, M. M. Comparação Entre Ferramentas de Modelagem Unidimensional e Quasi-Bidimensional, Permanente e Não- Permanente, em Planejamento e Projetos de Engenharia Hidráulica. Rio de Janeiro: UFRJ/COPPE, 2010. XI, 160 p.: il.; 29,7 cm.
[8] Souza, E. B. GrADS – Grid Analysis and Display System Fundamentos e rogramação Básica. Universidade Federal do Pará. 2004. Disponível < http://www.dca.iag.usp.br/www/material/ritaynoue/aca522/referencias/apostilagrads.pdf>. Acesso em 01 de maio de 2017.