Improvement of Reaction Technology of Decalin Halogenation

In this research paper were investigated the main
regularities of a radical bromination reaction of decalin. There had
been studied the temperature effect, durations of reaction, frequency
rate of process, a ratio of initial components, type and number of the
initiator on decalin bromination degree.
There were specified optimum conditions of synthesis of a
perbromodecalin by the method of a decalin bromination. There are
developed the technological flowchart of receiving a
perbromodecalin and the mass balance of process on the first and the
subsequent loadings of components.
The results of research of antibacterial and antifungal activity of
synthesized bromoderivatives have been represented.





References:
[1] E. Tsuchida, E. J. G. Riess, P. E. Keipert, Blood Substitutes, Lausanne:
Elsevier Science SA, 1998.
[2] J. G. Riess, Biomater. Artif. Cells Immobil. Biotechnol., vol. 20, pp. 183-
202, 1992.
[3] O. P. Habler, M. S. Kleen, J . W. Hutter, Transfusion, vol. 38, pp.
145-155, 1998.
[4] J. L. Kiplinger, T. D. Richmond, J. Am. Chem. Soc., vol. 118, no. 7, pp.
1805-1812, 1996.
[5] I. P. Ushakova, N. A. Braghina, A. F. Mironov, Halogenation methods
in organic synthesis, Moscow: MCTI, 2005.
[6] B. V. Passet, Main processes chemical synthesis of biologically active
substances, Moscow: Geotar-Media, 2002.
[7] L. N. Milovanova Manufacturing techniques of dosage forms, Rostov:
Phoenix, 2002.
[8] R. J. Lagow, T. R. Beirschenk, T. J. Juhkle., H. Kawa, Synthetic fluorine
chemistry, N.Y.: Wiley, 2009.
[9] G. Marchionni, A. Staccione, G. Gregorio, J. Fluorine Chem., vol. 47,
pp. 515-518, 2004.
[10] I. L. Knunyants, G. G. Jacobson, Synthesis of fluororganic compounds,
Moscow: Chemistry, 2000.
[11] B. Gething, C. Patrick, M. Stacey, J. Tatlow, Nature, vol. 178, pp. 199-
208, 1956.
[12] G. G. Jakobson, V. D. Shteingartz, Izv. Akad. Nauk, Ser.Khim., vol. 8,
pp. 1551-1558, 1964.
[13] G. Fuller, J. Chem. Soc., vol. 111, pp. 6264-6272, 1965.
[14] C.-M. Hu, F. Long, Z.-Q. Xu, J. Fluorine Chem., vol. 48, pp. 29-40,
1990.
[15] J. L. Kiplinger, T. D. Richmond, J. Am. Chem. Soc., vol. 118, pp. 1805-
1812, 1996.
[16] T. Hamatsuka, T. Suzuki, Y. Itoh, H. Hirata, Chem. Pharm. Bull., vol.
36, pp. 4225-4231, 1988.
[17] S. Ayabe, Arch. Biochem. Biophys., vol. 261, pp. 458-461, 1988.
[18] G. Kochs, S. Pilge, G. Stockmanns, Eur. J. Biochem., vol. 155, pp. 311-
318, 1986.
[19] E. A. Kean, M. Gutman, T. P. Singer, Biochem. Biophys. Res. Commun.,
vol. 40, no. 6, pp. 1507-1513, 1970.
[20] C.-L. Peng, S.-W. Chen; Z.-F. Lin, Prog. Biochem. Biophys, vol. 27, pp.
658-661, 2000.
[21] W. Heller, K. Hahibrock, Arch. Biochem. Biophys., vol. 200, pp. 617-
619, 1980.
[22] L. Beerhues, R. Wiermann, Ztschr. Naturforsch. C, vol. 40, pp. 160-165,
1985.
[23] M. Lahlou, Phytother. Res., vol. 18, pp. 435-448, 2004.
[24] Sh. Inouye, H. Yamaguchi, T. Takizawa, J. Infect. Chemother., vol. 7,
no., 4, pp. 251-254, 2001.