Impact of Weather Conditions on Generalized Frequency Division Multiplexing over Gamma Gamma Channel

The technique called as Generalized frequency division
multiplexing (GFDM) used in the free space optical channel can be
a good option for implementation free space optical communication
systems. This technique has several strengths e.g. good spectral
efficiency, low peak-to-average power ratio (PAPR), adaptability
and low co-channel interference. In this paper, the impact of
weather conditions such as haze, rain and fog on GFDM over the
gamma-gamma channel model is discussed. A Trade off between link
distance and system performance under intense weather conditions is
also analysed. The symbol error probability (SEP) of GFDM over
the gamma-gamma turbulence channel is derived and verified with
the computer simulations.





References:
[1] GM. A. Khalighi, M. Uysal, Survey on free space optical
communication:A communication theory perspective, IEEE
Communications Surveys and Tutorials, 16(4), pp. 22312258, 2014.
[2] Z. Ghassemlooy, S. Arnon, M. Uysal, Z. Xu, J. Cheng, Emerging
Opti-cal Wireless Communications-Advances and Challenges, IEEE
Journal on Selected Areas in Communications, 33(9), pp. 17381749,
2015.
[3] J. Perez, F. I. Chicharro, B. Ortega, J. Mora, On the evaluation of
an optical OFDM radio over FSO system with IM-DD for high-speed
indoor communications, in: International Conference on Transparent
Optical Net-works, pp. 14, 2017.
[4] H. Kaushal, G. Kaddoum, Optical Communication in Space:
Challengesand Mitigation Techniques, IEEE Communications Surveys
and Tutorials, 19(1), pp. 5796, 2017.
[5] K. Anbarasi, C. Hemanth, R. Sangeetha, A review on channel models in
free space optical communication systems, Optics & Laser Technology,
97, pp. 161171, 2017.
[6] R. Gupta, T. Singh Kamal, P. Singh, Concatenated LDPC-TCM
Codes for Bet-ter Performance of OFDM-FSO System Using Gamma
Gamma Fading Model, Wireless Personal Communications, 106(8), pp.
22472260, 2019.
[7] Prabu K, P. S. Pati, Modeling of OFDM based RoFSO system for
Bhubaneswar weather conditions, Wireless Personal Communications,
May (2019), pp. 121, 2019.
[8] D. Kakatia, S. C. Aryaa, Performance of 120 Gbps Single Channel
Coherent DP-16-QAM in Terrestrial FSO Link under Different Weather
Conditions, Optik, 178, pp. 1230-1239, 2019.
[9] M. Sultana, A. Barua, J. Akhtar, M. I. Reja, Performance Investigation of
OFDM-FSO System under Diverse Weather Conditions of Bangladesh,
International Journal of Electrical and Computer Engineering, 8(5), pp.
3722-3731, 2018.
[10] H. Rongqing, Z. Benyuan, H. Renxiang, T. A. Christopher, R. D.
Kenneth,R. Douglas, Subcarrier multiplexing for high-speed optical
transmission, Journal of Lightwave Technology, 20(3), pp. 417424,
2002.
[11] A. Bekkali, C. B. Naila, K. Kazaura, K. Wakamori, M. Matsumoto,
Trans-mission analysis of OFDM-based wireless services over turbulent
radio-on-FSO links modeled by Gamma - Gamma distribution, IEEE
Photonics Journal, 2(3), pp. 510520, 2010.
[12] J. Armstrong, Peak-to-average power reduction for OFDM by
repeatedclipping and frequency domain filtering, Electronics Letters,
38(5), p. 246, 2002.
[13] R. Gerzaguet, N. Bartzoudis, L. G. Baltar, V. Berg, J. B. Dore, D. Ktenas,
O. Font-Bach, X. Mestre, M. Payaro, M. Farber, K. Roth, The 5G
candidate waveform race: a comparison of complexity and performance,
Eurasip Journal on Wireless Communications and Networking, 13,
Springer Open, 2017.
[14] G. Fettweis, M. Krondorf, S. Bittner, GFDM - generalized frequency
division multiplexing, IEEE Vehicular Technology Conference, pp. 14,
2009.
[15] N. Michailow, S. Krone, M. Lentmaier, G. Fettweis, Bit error rate
perfor-mance of generalized frequency division multiplexing, IEEE
Vehicular Technology Conference, pp. 15, 2012.
[16] N. Michailow, M. Matthe, I. S. Gaspar, A. N. Caldevilla, L.
L. Mendes,A. Festag, G. Fettweis, Generalized frequency division
multiplexing for 5th generation cellular networks, IEEE Transactions
on Communications, 62(9), pp. 30453061, 2014.
[17] S. K. Antapurkar, A. Pandey, K. K. Gupta, GFDM performance in terms
of BER, PAPR and OOB and comparison to OFDM system, IEEE AIP
Conference Proceedings, pp. 16, 2016.
[18] W. D. Dias, L. L. Mendes, J. J. P. C. Rodrigues, Low complexity GFDM
receiver for Frequency-Selective Channels, IEEE Communications
Letters, 23, pp. 1166 1169, 2019.
[19] V. Kishore, V. V. Mani, An LED modelled GFDM for optical wireless
communications, AEUE - International Journal of Electronics and
Communications, 101, pp. 5461, 2019.
[20] Z. Na, J. Lv, M. Zhang, B. A. O. Peng, M. Xiong, M. Guan, GFDM
Based Wireless Powered Communication for Cooperative Relay System,
IEEE Access, 7, pp. 5097150979, 2019.
[21] V. Kishore, V. V. Mani, A DC Biased Optical Generalised Frequency
Division Multiplexing for IM/DD systems, Physical Communication, 33,
pp. 115122, 2019.
[22] Y. Wang, D. Wang, J. Ma, On the Performance of Coherent OFDM
Sys-tems in Free-Space Optical Communications, IEEE Photonics
Journal, 7, Open Access, 2015.
[23] N. A. Mohammed, A. S. El-Wakeel, M. H. Aly, Pointing Error in FSO
Link under Different Weather Conditions, International Journal of Video
& Image Processing and Network Security, 12(1), pp. 6-9, 2012.
[24] A. Yenilmez, T. Gucluoglu, P. Remlein, Performance of GFDM-maximal
ratio transmission over Nakagami-m fading channels, IEEE International
Symposium on Wireless Communication Systems, pp. 523527, 2016.
[25] S. K. Bandari, A. Drosopoulos, V. V. Mani, Exact SER Expressions
of GFDM in Nakagami-m and Rician fading channels, 21th European
Wireless Conference, pp. 16, 2015.
[26] M. P. Ninos, H. E. Nistazakis, G. S. Tombras, On the BER
performance of FSO links with multiple receivers and spatial jitter
over gamma-gamma or exponential turbulence channels, Optik, 138, pp.
269279, 2017.
[27] A. Farhang, N. Marchetti, L. E. Doyle, Low-Complexity Modem
Design for GFDM, IEEE Transactions on Signal Processing, 64(6), pp.
15071518, 2016.