Hemocompatible Thin-Film Materials Recreating the Structure of the Cell Niches with High Potential for Endothelialization

The future and the development of science is therefore seen in interdisciplinary areas such as biomedical engineering. Selfassembled structures, similar to stem cell niches would inhibit fast division process and subsequently capture the stem cells from the blood flow. By means of surface topography and the stiffness as well as microstructure progenitor cells should be differentiated towards the formation of endothelial cells monolayer which effectively will inhibit activation of the coagulation cascade. The idea of the material surface development met the interest of the clinical institutions, which support the development of science in this area and are waiting for scientific solutions that could contribute to the development of heart assist systems. This would improve the efficiency of the treatment of patients with myocardial failure, supported with artificial heart assist systems. Innovative materials would enable the redesign, in the post project activity, construction of ventricular heart assist.




References:
[1] K. Cieślik, W. Witkowski, J. Drukała, A. Waligórska, J. Puchała,
“Biotechnological dressings and living skin substitutes- overview and
current applicability,” (in polish) Leczenie Ran,vol. 2(3), 2005, pp. 71-
83.
[2] M. P. Lutolf, P.M. Gilbert, H. M. Blau, “Designing materials to direct
stem-cell fate,” Nature, vol. 462(7272), 2009, pp. 433–441.
[3] D.T. Scadden, “The stem-cell niche as an entity of action,” Nature, vol.
441(7097), 2006, pp. 1075–1079.
[4] D.L. Jones, A.J. Wager, “No place like home: anatomy and function of
the stem cell niche,” Nat Rev Mol Cell Biol, vol. 9(1), 2008, pp. 11–21.
[5] E. Fuchs, T. Tumbar, G. Guasch, “Socializing with the neighbors: stem
cells and their niche,” Cell, vol. 116(6), 2004, pp. 769–778.
[6] R. Schofield, “The relationship between the spleen colony-forming cell
and the haemopoietic stem cell,” Blood Cells, vol. 4(1–2), 1978, pp. 7–
25.
[7] D. Nie, “Cancer stem cell and niche,” Front Biosci, vol. 2 (1), 2010, pp.
184–193.
[8] F.J. King , H. Lin, “Somatic signaling mediated by fs(1)Yb is essential
for germline stem cell maintenance during Drosophila oogenesis,”
Development, vol. 126(9), 1999, pp. 1833–1844.
[9] T. Xie, A.C. Spradling, “A niche maintaining germ line stem cells in the
Drosophila ovary,” Science, vol. 290(5490), 2000, pp. 328–330.
[10] T. Tumbar, G. Guasch, V. Greco, C. Blanpai, W. E. Lowry, M. Rendl,
E. Fuchs, “Defining the epithelial stem cell niche in skin,” Science, vol.
303(5656), 2004, pp. 359–363.
[11] T. H. Yen, N. A. Wright, “The gastrointestinal tract stem cell niche,“
Stem Cell Rev, vol. 2(3), 2006, pp. 203–212.
[12] J.C. Conover, R.Q. Notti, “The neural stem cell niche,“Cell Tissue Res,
vol. 331(1), 2008, pp. 211–224.
[13] T. A. Mitsiadis, O. Barrandon, A. Rochat, Y. Barrandon, C. De Bari,
“Stem cell niches in mammals,” Exp Cell Res, vol. 313(16), 2007, pp.
3377–3385.
[14] H. Ohshima, N. Nakasone, E. Hashimoto, H. Sakai, K. Nakakura-
Ohshima, H. Harada, “The eternal tooth germ is formed at the apical end
of continuously growing teeth,” Arch Oral Biol, vol. 50(2), 2005, pp.
153–157.
[15] A. Wilson, A. Trumpp,“Bone-marrow haematopoietic-stem-cell niches,“
Nat Rev Immunol, vol. 6(2), 2006, pp. 93–10
[16] C. Chai, K.W. Leong, “Biomaterials approach to expand and direct
differentiation of stem cells,” Mol Ther, vol. 15, 2007, pp. 467–480.
[17] K. Saha, J.F. Pollock, D.V. Schaffer, K. E. Healy, “Designing synthetic
materials to control stem cell phenotype,“ Curr Opin Chem Biol, vol. 11,
2007, pp. 381–387.
[18] N. S. Hwang, S. Varghese, J. Elisseeff, “Controlled differentiation of
stem cells,” Adv Drug Deliv Rev, vol. 60, 2008, pp. 199–214.
[19] E. Dawson, G. Mapili, K. Erickson, S. Taqvi, K. Roy, “Biomaterials for
stem cell differentiation,” Adv Drug Deliv Rev, vol. 60, 2008, pp. 215–
228.
[20] S.M. Dellatore, A.S. Garcia, W. M. Miller, “Mimicking stem cell niches
to increase stem cell expansion,” Curr Opin Biotechnol, vol. 19, 2008,
pp. 534–540.
[21] N. Evans, E. Gentelman, J. Polak, “Scaffolds for stem cells,” Materials
Today, vol. 9(12), 2006, pp. 26–33.
[22] A. Laha, S. Bhattacharyya, S.B. Krupanidhi, “Impact of microstructure
on dielectric properties of Pb(Mg1/3Nb2/3)O3–PbTiO3 thin films,”
Mater. Sci. Eng. B, vol. 106, 2004, pp. 111–119.
[23] J. A. Thornton, “High rate thick film growth,” Ann. Res. Mat. Sci, vol.
7, 1977, pp. 239-260.
[24] J. M. Lackner, “Industrially-styled room-temperature pulsed laser
deposition of titanium-based coatings,” Vacuum, vol. 78, 2005, pp. 73–
82.
[25] K. Mylvaganam, L. C. Zhang, “Residual stress induced atomic scale
buckling of diamond carbon coatings on silicon substrate,“ Thin Solid
Films, vol. 425, 2003, pp. 145–149.
[26] J. M. Lackner, W. Waldhauser, R. Major, B. Major, F. Bruckert,
“Hemocompatible, pulsed laser deposited coatings on polymers,”
Biomedizinische Technik, vol. 55 (1), 2010, pp. 57- 64.
[27] N. D. Evans, C. Minelli, E. Gentleman, V. La Pointe, S. N. Patankar, M.
Kallivretaki, X. Chen, C. J. Roberts, M. M. Stevens,” Substrate stiffness
affects early differentiation events in embryonic stem cells,“ NEDur
oEpveaanns Cete lalls. and Materials, vol. 18, 2009, pp. 1- 14.
[28] L. Linheng, T. Xie, “Stem cell niche: structure and function,” Annual
review of cell and developmental biology, vol. 21, 2005, pp. 605-631.
[29] M. V. Gomez-Gaviro, R. Lovell-Badge, F. Fernandez-Aviles, E. Lara-
Pezzi, “The Vascular Stem Cell Niche,” J. of Cardiovasc. Trans. Res,
vol. 5, 2012, pp. 618-630.
[30] S. Chen, M. Lewallen, T. Xie, “Adhesion in stem cell niche: biological
roles and regulation,” Develop., vol. 140(2), 2013, pp. 255-65.
[31] E. Fuchs, T. Tumbar, G. Guasch, “Socializing with the neighbors: stem
cells and their niche,“ Cell, vol. 116(6), 2004, pp. 769–778.
[32] K. A. Moore, I. R. Lemischka,“Stem cells and their niches,” Science,
vol. 311(5769), 2006, pp. 1880–1885.0
[33] T. M. Farooque, Ch. H. J. Camp, Ch. K. Tison, G. Kumar, S. H. Parekh,
C. G. Jr Simon,“Measuring stem cell dimensionality in tissue scaffolds,”
Biomaterials, vol. 35, 2014, pp. 2558-2567.
[34] L. A. Turner, M. J. Dalby, “Nanotopography – potential relevance in the
stem cell niche,” Biomater. Sci, vol. 2, 2014, pp. 1574-1594.
[35] J. M. Anderson, J. Schoen, “In vivo assessment of tissue compatibility,”
in An introduction to materials in medicine, 2nd ed. B. D. Ratner, A. S.
Hoffman, F. J. Schoen and J. E. Lemons, San Diego: Elsevier Academic
Press, 2004, pp. 360–366.
[36] M. Sanak, B. Jakiela, W. Wegrzyn, “Assessment of hemocompatibility
of materials with arterial blood flow by platelet functional tests,” Bull.
Polish Acad. of Sci.: Tech. Sci., vol. 58(2), 2010, pp. 317–322.
[37] U. T. Seyfert, V. Biehl, J. Schenk, “In vitro hemocompatibility testing of
biomaterials according to the ISO 10993_4,” Biomol. Eng., vol. 19,
2002, pp. 91–96.
[38] J. M. Lackner, P. Wilczek, M. Sanak, B. Jakiela, B. Stolarzewicz, M.
Kowalczuk, M. Sobota, K. Maksymow, M. Spisak, B. Major,
“Functional cardio-biomaterials,” Advances in Materials Science,
vol.11(2), 2011, pp. 5–25.
[39] R. Major, “Self-assembling surfaces of blood-contacting materials,” J.
Mater. Sci-Mater. M., vol. 24, 2013, pp. 725-733.
[40] R. Dardik, N. Savion, N. Gal, D. Varon, “Flow conditions modulate
homocysteine induced changes in the expression of endothelial cell
genes associated with cell-cell interaction and cytoskeletal
rearrangement,“ Thromb. and Haemostasis, vol. 88, 2002, pp. 1047–
1053.
[41] Y. Germanier, S. Tosatti, N. Broggini, M. Textor, D. Buser, “Enhanced
bone apposition around biofunctionalized sandblasted and acidetched
titanium implant surfaces. A histomorphometric study in miniature
pigs,” Clin Oral Impl Res., vol. 17, 2006, pp. 251–257.
[42] B. Shenkman, A. Inbal, I. Tamarin, A. Lubetsky, N. Savion, D. Varon,
“Diagnosis of thrombotic thrombocytopenic purpura based on
modulation by patient plasma of normal platelet adhesion under flow
condition,“ Br. J. Haematol., vol. 120, 2003, pp. 597–604.
[43] X. Wang, R. T. Dorsam, A. Lauver, H. Wang, F. A. Barbera, S. Gibbs,
D. Varon, N. Savion, S. M. Friedman, G.Z. Feuerstein, “Comparative
analysis of various platelet glycoprotein IIb/IIIa antagonists on shearinduced
platelet activation and adhesion,” J. Pharmacol. Exp. Ther., vol.
303(3), 2002, pp. 1114–1120.
[44] Y. M. Yamashita, “Cell adhesion in regulation of asymmetric stem cell
division,“ Curr. Opin. Cell Biol., vol. 22, 2010, pp. 605-610.
[45] N. A. Peppas, “Hydrogels in Medicine and Pharmacy,” CRC Press 1987.
[46] A. S. Hickey, N. A. Peppas, “Mesh size and diffusive characteristics of
semicrystalline poly(vinyl alcohol) membranes prepared by
freezing/thawing technique,” J. Membrane Sci., vol. 107, 1995, pp. 229-
237.
[47] K. Kazmierska, K. Kuc, T. Ciach, “Polyvinylpyrrolidone-Polyurethane
Interpolymer Hydrogel Coating as a Local Drug Delivery System,” Acta
Pol. Pharm. - Drug Res., vol. 65(6), 2008, pp. 763-766.
[48] P. C. Nicolson, J. Vogh,“Soft contact lens polymers: an evolution,”
Biomaterials, vol. 22, 2001, pp. 3273–83.