Growth Behaviors, Thermostable Direct Hemolysin Secretion and Fatty Acid Profiles of Acid-adapted and Non-adapted Vibrio parahaemolyticus

Three strains of Vibrio parahaemolyticus (690, BCRC
13023 and BCRC 13025) implicated in food poisoning outbreaks in
Taiwan were subjected to acid adaptation at pH 5.5 for 90 min. The
growth behaviors of acid-adapted and non-adapted V.
parahaemolyticus in the media supplemented with various nitrogen
and carbon sources were investigated. The effects of acid adaptation
on the thermostable direct hemolysin (TDH) secretion and fatty acid
profiles of V. parahaemolyticus were also examined. Results showed
that acid-adapted and non-adapted V. parahaemolyticus 690, BCRC
13023 and BCRC 13025 grew similarly in TSB-3% NaCl and basal
media supplemented with various carbon and nitrogen sources during
incubation period. Higher TDH secretion was noted with V.
parahaemolyticus 690 among the three strains. However, acid-adapted
strains produced less amounts of TDH than non-adapted strains when
they were grown in TSB-3% NaCl. Additionally, acid adaptation
increased the ratio of SFA/USFA in cells of V. parahaemolyticus
strains.





References:
[1] Lou, Y. and A. E. Yousef. 1997. Adaptation to sublethal environmental
stresses protects Listeria monocytogenes against lethal preservation
factors. Appl. Environ. Microbiol. 63: 1252-1255.
[2] Browne, N. and B. Dowds. 2002. Acid stress in the food pathogen
Bacillus cereus. J. Appl. Microbiol. 92: 404-414.
[3] Tetteh, G. L. and L. R. Beuchat. 2003. Exposure of Shigella flexneri to
acid stress and heat shock enhances acid tolerance. Food Microbiol. 20:
179-185.
[4] Tosun, H. and S. A. Gönül. 2003. Acid adaptation protects Salmonella
typhimurium from environmental stresses. Turk. J. Biol. 27: 31-36.
[5] Bearson, S., B. Bearson and J. W. Foster. 1997. Acid stress responses in
enterobacteria. FEMS Microbiol. Lett. 147: 173-180.
[6] Abee, T. and J. A. Wouters. 1999. Microbial stress response in minimal
processing. Int. J. Food Microbiol. 50: 65-91.
[7] Audia, J. P., C. C. Webb and J. W. Foster. 2001. Breaking through the
acid barrier: an orchestrated response to proton stress by enteric bacteria.
Int. J Med. Microbiol. 291: 97-106.
[8] Brown, J. L., T. Ross, T. A. McMeekin and P. D. Nichols. 1997. Acid
habituation of Escherichia coli and the potential role of cyclopropane
fatty acids in low pH tolerance. Int. J. Food Microbiol. 37: 163-173.
[9] Fozo, E. M., J. K. Kajfasz and R. G. Quivey Jr. 2004. Low pH-induced
membrane fatty acid alterations in oral bacteria. FEMS Microbiol. Lett.
238: 291-295.
[10] Jobin, M. P., T. Clavel, F. Carlin and P. Schmitt. 2002. Acid tolerance
response is low-pH and late-stationary growth phase inducible in Bacillus
cereus TZ415. Int. J. Food Microbiol. 79: 65-73.
[11] Yeung P. S. M. and K. J. Boor. 2004. Effects of acid stress on Vibrio
parahemolyticus survival and cytotoxicity. J. Food Prot. 67: 1328-1334.
[12] House, B., J. V. Kus, N. Prayitno, R. Mair, L. Que, F. Chingcuanco, V.
Gannon, D. G. Cvitkovitch and D. B. Foster. 2009. Acid-stress-induced
changes in enterohaemorrhagic Escherichia coli O157:H7 virulence.
Microbiol. 155: 2907-2918.
[13] Liston, J. 1990. Microbial hazards of seafood consumption. Food
Technol. 44:56-62.
[14] Daniels, N. A., L. MacKinnon, R. Bishop, S. Altekruse, B. Ray, R. M.
Hammond, S. Thompson, S. Wilson, N. H. Bean and P. M. Griffin. 2000.
Vibrio parahaemolyticus infections in the United States, 1973-1998. J.
Infect. Dis. 181: 1661-1666.
[15] Su, Y. C. and C. Liu. 2007. Vibrio parahaemolyticus: a concern of
seafood safety. Food Microbiol. 24: 549-558.
[16] Takeda, Y., 1983. Thermostable direct hemolysin of Vibrio
parahaemolyticus. Pharmacol. Therap. 19: 123-146.
[17] Raimondi, F., J. P. Y. Kao, C. Fiorentini, A. Fabbri, G. Donelli, N.
Gasparini, A. Rubino and A. Fasano. 2000. Enterotoxicity and
cytotoxicity of Vibrio parahaemolyticus thermostable direct hemolysin in
in vitro systems. Infect. Immun. 68: 3180-3185.
[18] Taiwan Food and Drug Administration (TFDA). 2013. Occurrence of
food poisoning outbreaks in Taiwan, 1981-2012. Ministry of Health and
Welfare, Taipei, Taiwan.
[19] Centers for Disease Control and Prevention (CDC). 2013. Vibrio
parahaemolyticus. Available at: http://www.cdc.gov/vibrio/vibriop.html,
accessed November 12, 2013.
[20] Chiang M. L., C. C. Chou, H. C. Chen, Y. T. Tseng and M. J. Chen. 2012.
Adaptive acid tolerance response of Vibrio parahaemolyticus as affected
by acid adaptation conditions, growth phase, and bacterial strains.
Foodborne Pathog. Dis. 9: 734-740.
[21] Chiang M. L., H. C. Chen, C. Wu, Y. T. Tseng and M. J. Chen. 2013.
Effect of acid adaptation treatment on the survival of Vibrio
parahaemolyticus in oyster homogenates under heat, cold and simulated
gastrointestinal conditions. Taiwanese J. Agri. Chem. Food Sci. 51:
34-42.
[22] Chiang M. L., H. C. Chen, C. Wu and M. J. Chen. 2014. Effect of acid
adaptation on the environmental stress tolerance of three strains of Vibrio
parahaemolyticus. Foodborne Pathog. Dis. 11: 287-294.
[23] Chiang M. L., H. C. Chen, C. Wu, Y. T. Tseng and M. J. Chen. 2012.
Effect of acid adaptation on the survival of three Vibrio parahaemolyticus
strains under simulated gastric condition and their protein expression
profiles. World Acad. Sci. Eng. Technol. 6: 233-236.
[24] Lepage, G. and C. Roy. 1986. Direct transesterification of all classes of
lipids in a one-step reaction. J. Lipid Res. 27: 114-120.
[25] Eguchi, M., T. Nishikawa, K. Macdonald, R. Cavicchioli, J. C. Gottschal
and S. Kjelleberg. 1996. Responses to stress and nutrient availability by
the marine ultramicrobacterium Sphingomonas sp. strain RB2256 Appl.
Environ. Microbiol. 62: 1287-1294.
[26] Schimel, J., T. C. Balser and M. Wallenstein. 2007. Microbial
stress-response physiology and its implications for ecosystem function.
Ecology 88: 1386-1394.
[27] Duffy, G., D. Riordan, J. Sheridan, J. Call, R. Whiting, I. Blair and D.
McDowell. 2000. Effect of pH on survival, thermotolerance, and
verotoxin production of Escherichia coli O157: H7 during simulated
fermentation and storage. J. Food Protect. 63: 12-18.
[28] Yuk, H. G. and D. L. Marshall. 2004. Adaptation of Escherichia coli
O157: H7 to pH alters membrane lipid composition, verotoxin secretion,
and resistance to simulated gastric fluid acid. Appl. Environ. Microbiol.
70: 3500-3505.
[29] Yuk, H. G., D. L. Marshall and L. Douglas. 2005. Influence of acetic,
citric, and lactic acis on Escherichia coli O157:H7 membrane lipid
composition, verotoxin seretion, and acid resistance in simulated gastric
fluid. J. Food Prot. 68: 673-679.
[30] Lepage, C., F. Fayolle, M. Hermann and J. P. Vandecasteele. 1987.
Changes inmembrane lipid composition of Clostridium acetobutylicum
during acetone-butanol fermentation: effects of solvents, growth
temperature and pH. Microbiol. 133: 103-110.
[31] Bodnaruk, P. W. and D. A. Golden. 1996. Influence of pH and incubation
temperature on fatty acid composition and virulence factors of Yersinia
enterocolitica. Food Microbiol. 13: 17-22.