Fracture Toughness Characterization of Carbon-Epoxy Composite using Arcan Specimen

In this study the behavior of interlaminar fracture of carbon-epoxy thermoplastic laminated composite is investigated numerically and experimentally. Tests are performed with Arcan specimens. Testing with Arcan specimen gives the opportunity of utilizing just one kind of specimen for extracting fracture properties for mode I, mode II and different mixed mode ratios of materials with exerting load via different loading angles. Variation of loading angles in range of 0-90° made possible to achieve different mixed mode ratios. Correction factors for various conditions are obtained from ABAQUS 2D finite element models which demonstrate the finite shape of Arcan specimens used in this study. Finally, applying the correction factors to critical loads obtained experimentally, critical interlaminar fracture toughness of this type of carbon- epoxy composite has been attained.




References:
[1] F. Dharmawan, G. Simpson, I. Herszberg, S. John. "Mixed mode
fracture toughness of GFRP composites." Composite Structures,2006
[2] James R. Reeder. K. Song, P. Chunchu, D. R. Ambur, "Postbukling and
growth of delamination in composite plates subjected to axial
compression." AIAA journal, 2002.
[3] James R. Reeder and John R. Crews. "Mixed Mode Bending Method for
Delamination Testing." Published in AIAA Journal, vol 28, 1990, pages
1270-1276.
[4] James R. Reeder. "3d mixed mode delamination fracture criteria-an
experimentalist perspective." NASA Langley research center,M/S 188E,
Hampton VA 23681-2199,USA.
[5] John H. Crews, Jr. and James R. Reeder. "A mixed mode bending
apparatus for delamination testing." NASA technical memorandum
100662, August 1988.
[6] Andras Szekrenyes. "Delamination fracture analysis in the GI-GII plane
using prestressed transparent composite beams." International journal of
solids and structures 44(2007) 3359-3378.
[7] Andras Szekrenyes. "Prestressed fracture specimen for delamination
testing of composites." International journal of fracture (2006) 139: 213-
237.
[8] Yuh J. Chao and Shu Liu. "On the failure of crack under mixed mode
loads." International journal of fracture 87: 201-223, 1997.
[9] E. Priel, A. bussiba, I. Gilad, Z. Yosibash. "Mixed mode failure criteria
for brittle elastic V-notched structures." International journal of fracture
(2007) 144: 247-265.
[10] Ronald Krueger. "A shell/3D modeling technique for delamination in
composite laminates. In proceedings of the American society for
composites," 14th technical conference, technomic publishing, 1999.
[11] Ronald Krueger, P. J. Minguet, T. K. O-Brien. "Implementation of
interlaminar fracture mechanics in design: an overview.", Presented at
14th international conference on composite materials (ICCM-14), San
Diego, July 14-18,2003.
[12] R. Krueger, D. Goetze. "influence of finite element software on energy
release rates computed using the virtual crack closure technique."
NASA/CR-2006-214523, NIA Report No. 2006-06.
[13] C. Liu, Y. Huang, M.L. Lovato, M.G. Stout. "measurement of the
fracture toughness of fiber reinforced composite using the Brazilian
geometry." International journal of fracture 87: 241-263.1997.
[14] L. Banks-Sills, Y. Freed, R. Eliasi, V.Fourman. "fracture toughness of
the +45/-45 interface of laminate composite." International journal of
fracture (2006) 141: 195-210.
[15] S.K. Verma, P. Kumar. "Evaluation of critical sif of DCB specimen
made of slender cantilever. Engineering fracture mechanics." 1995.
[16] B.W. Kim, A.H. Mayer, "Influence of fiber direction and mixed mode
ratio on delamination fracture toughness of carbon-epoxy laminates."
Composite science and technology. 2003.
[17] B.S. Majumdar and D. Hunston, "Continuous Parallel Fiber Composites:
Fracture", Encyclopedia of Materials: Science and Technology, Elsevioe
Ltd. 2001.
[18] M. Arcan, Z. hashin, A. voloshin, "A method to produce uniform plane
stress state with application to fiber-reinforced materials," Experimental
mechanics. 1978.
[19] M.A. Sutton, W. Zhao, M.L. Boone, A. P. Reynolds, D.S. Dawicke,
"Prediction of crack growth direction for mode I/II loading using smallscale
yielding and void initiation/growth concepts." International Journal
of Fracture, 83, 1997.
[20] N. Hallback. "The influence of finite geometry and material properties
on mixed mode I/II fracture of aluminum." International journal of
fracture 87: 151-188, 1997.
[21] M.R. Ayatollahi, R. Hashemi. "Mixed mode Fracture in an inclined
center crack repaired by composite patching." Composite structure, 81,
264-273, 2007.
[22] M.R. Ayatollahi, D.J. Smith and M.J. Pavier."Crack-tip Constraint in
mode II deformation." International Journal of Fracture, 113, 2002.
[23] S.C. Hung and K.M. Liechti. "An evaluation of the Arcan specimen for
determining the shear module of fiber reinforced composites."
Experimental mechanics, volume 37, no. 4, December 1997.
[24] ABAQUS user-s manual, version 6.5. Pawtucket, USA: Hibbit, Karlsson
and Sorensen, HKS Inc; 2004.
[25] American society for testing and materials.1991,standard D5045-
91a,plane-stain fracture toughness and strain energy release rate of
plastic materials, Annual book of ASTM standards Philadelphia: ASTM.
[26] N. Choupani. "Experimental and numerical investigation of the mixed
mode delamination in Arcan laminated specimens." Material science and
technology, volume 478(2008): 229-242.