Fatigue Crack Initiation and Propagation through Residual Stress Field

In this paper fatigue crack initiation and propagation in notched plate under constant amplitude loading through tensile residual stress field of 2024 T351 Al-alloy plate were investigated. Residual stress field was generated by plastic deformation using finite element method (FEM) where isotropic hardening in Von Mises model was applied. Simulation of fatigue behavior was made on AFGROW code. It was shown that the fatigue crack initiation and propagation were affected by level of residual stress filed. In this investigation, the presence of tensile residual stresses at notch (hole) reduces considerably the total fatigue life. It was shown that the decreasing in stress reduces the fatigue crack growth rates.





References:
[1] G. Glinka, "Residual stress in fatigue and fracture: Theoretical analyses
and experiments". In Niku-Lari A., Editor, Advances in Surfaces Treatments, 413-454. Pergamon Press, (1987).
[2] H. Mughrabi, "Fatigue Behavior of Metallic Materials", D. Munz, Ed.,
DGM-Information sgesellschaft Verlag, Oberursel, 7-38, (1985).
[3] M. Truchon, "Application of low-cycle fatigue test results to crack
initiation from notches, low-cycle fatigue and life prediction", ASTM
STP 770, C. Amzallag, B. N. Leis, and P. Rabbe, (Eds.), American Society for Testing and Materials (1982) 254.
[4] G. Glinka, Engineering Fracture Mechanics, 21(2) (1985), 245.
[5] D. F. Socie, Experimental Mechanics, 17 (1977) 50.
[6] X. Zheng, International Journal of Fatigue 23 (2001), 751.
[7] Z. Khan, A. Rauf, M. Younas, Journal of Material Engineering and
Performance. 6(3) (1977) 365.
[8] M. Zheng, E. Niemi, X. Zheng, Theoretical Applied Fracture
Mechanics. 26 (1997) 23.
[9] F.J. McMaster, D.J. Smith, International Journal of Fatigue 23, S93-
S101, (2001)
[10] C.A. Rodopoulos, J.H. Choi, E.R. De los Rios, J.R. Yates, International
Journal Fatigue 26 (2004) 747.
[11] M. Benachour, A. Hadjoui, M. Benguediab and N. Benachour. "Stress
ratio effect on fatigue behavior of aircraft aluminum alloy 2024 T351".
MRS Proceedings, 1276, 7 (2010).
[12] P.J. Withers, H.K.D.H. Bhadeshia, Materials Sciences and Technology
17 (2001).
[13] C. Makabe, A. Purnowidodo A. A.J. McEvily, International Journal of
Fatigue 26 (2004) 1341.
[14] R. John, K.V. Jata, K. Sadananda, International Journal of Fatigue 25
(2003) 939.
[15] J. Barralis, L. Castex, G. Maeder, "Précontraintes et traitements
superficiels", Technique de l-Ingénieur, traité matériaux métalliques M1
180.
[16] T. Fett, Engineering Fracture Mechanics 56 (1997) 275.
[17] M. Beghini, L. Bertini, Engineering Fracture Mechanics, 36 (1990) 379.
[18] S. Suresh, R.O. Ritchie, Materials Sciences and Engineering. 51 (1981)
61.
[19] S. Kamel, Robert C. Wimpory, Michael Hofmann, Kamran M. Nikbin,
N.P. O'Dowd, Advanced Materials Research, 89-91 (2010) 275.
[20] A.N. Al-Khazraji, F.M. Mohammed, R. A. Al-Taie, Eng. Tech. Journal,
29 (3) (2011).
[21] M. Zheng, J.H.Luo, X.W.Zhao, Z.Q. Bai, R.Wang, International Journal
of Pressing and Vessels Piping. 82(2005) 546.
[22] J.C. Grosskreutz, C.G Shaw, "Critical mechanisms in the development
of fatigue cracks in 2024 T4 Aluminum", Proc. 2nd Int. Conf. on Fracture, Brighton (1969).
[23] N. Ranganathan, H. Aldroe, F. Lacroix, F. Chalon, R. Leroy, A.
Tougui,.International Journal of Fatigue 33 (2011) 492.
[24] E. Tuegel, Strain-life crack initiation life software, provided by
analytical processes and engineered solutions, (AP/ES) Inc., 1996.
[25] J.A Harter, “AFGROW users guide and technical manual: AFGROW for
Windows 2K/XP, Version 4.0011.14”, Air Force Research Laboratory,
2006.
[26] H. Neuber, Trans. ASME, Journal of Applied Mechanics (Dec 1960),
544
[27] L.F. Coffin, Transactions of the ASME, 76 (1954) 931.
[28] J.C. Newman, International Journal of Fracture, 24(3), 1984, 131.