Evaluation of Hydrogen Particle Volume on Surfaces of Selected Nanocarbons

This paper describes an approach to the adsorption
phenomena modeling aimed at specifying the adsorption mechanisms
on localized or nonlocalized adsorbent sites, when applied to the
nanocarbons. The concept comes from the fundamental
thermodynamic description of adsorption equilibrium and is based on
numerical calculations of the hydrogen adsorbed particles volume on
the surface of selected nanocarbons: single-walled nanotube and
nanocone. This approach enables to obtain information on adsorption
mechanism and then as a consequence to take appropriate
mathematical adsorption model, thus allowing for a more reliable
identification of the material porous structure. Theoretical basis of the
approach is discussed and newly derived results of the numerical
calculations are presented for the selected nanocarbons.





References:
[1] J. T. Duda, J. Milewska-Duda, M. Kwiatkowski, M. Ziółkowska, “A
geometrical model of random porous structures to adsorption
calculations”, Adsorption, vol. 19, pp. 545-555, Feb. 2013.
[2] H.-M. Cheng, Q.-H. Yang, C. Liu, “Hydrogen storage in carbon
nanotubes”, Carbon, vol. 39, pp. 1447-1454, Aug. 2001.
[3] Y. Gogotsi, R. K. Dash, G. Yushin, T. Yildirim, G. Laudisio, J. E.
Fischer, “Tailoring of nanoscale porosity in carbide-derived carbons for
hydrogen storage”, J. Am. Chem. Soc., vol. 127, pp. 16006-16007, Oct.
2005.
[4] X. Zhang, W. Wang, J. Chen, Z. Shen, “Characterization of a sample of
single-walled carbon nanotube array by nitrogen adsorption isotherm
and Density Functional Theory”, Langmuir, vol. 19, pp. 6088-6096,
May 2003.
[5] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, vol. 354,
pp. 56-58, Nov. 1991.
[6] S. N. Naess, A. Elgsaeter, G. Helgesen, K. D. Knudsen. “Carbon
nanocones: wall structure and morphology”, Sci. Technol. Adv. Mater.,
vol. 10, pp. 065002-065008, Dec. 2009.
[7] O. O. Adisa, B. J. Cox, J. M. Hill, “Open carbon nanocones as
candidates for gas storage”, J. Phys. Chem. C, vol. 115, pp. 24528–
24533, Nov. 2011.
[8] K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J.
Rouquerol, T. Siemieniewska, “Reporting physisorption data for
gas/solid systems with special reference to the determination of surface
area and porosity”, Pure Appl. Chem., vol. 57, pp. 603-619, Apr. 1985.
[9] J. Milewska-Duda, J.T. Duda, “New BET-like models for heterogeneous
adsorption in microporous adsorbents”, Appl. Surf. Sci., vol. 196, pp.
115-125, Aug. 2002.
[10] J. T. Duda, J. Milewska-Duda, „Modeling of Surface Heterogeneity of
Microporous Adsorbents with LBET Approach”, Langmuir, vol. 21, pp.
7243-7256, Jun. 2005.
[11] M. M. Dubinin, “Modern state theory of gas and vapour adsorption by
microporous adsorbents”, Pure Appl. Chem., vol. 10, pp. 309-322, Apr.
1965.
[12] M. M. Dubinin, “Fundamentals of the theory of adsorption in
micropores of carbon adsorbents: characteristics of their adsorption
properties and microporous structures”, Pure Appl. Chem., vol. 61, pp.
1841-1843, Nov. 1989.
[13] M. Ziółkowska, J. T. Duda, J. Milewska-Duda, “Adsorption mechanisms
in a view of DFT and clustering-based models”, in Proc. of International
Youth Science Festival: Litteris et artibus, Chemistry and Chemical
Technology, Lviv, 2013, pp. 184-187.
[14] C. M. Lastoskie, K. E. Gubbins, N. Quirke, „Pore size distribution
analysis of microporous carbons: a Density Functional Theory
approach”, J. Phys. Chem., vol. 97, pp. 4786-479, May 1993.
[15] A. Dąbrowski, “Adsorption from theory to practice”, Adv. Colloid
Interface Sci., vol. 93, pp. 135-224, Oct. 2001.
[16] J. Jagiełło, J. P. Olivier, “2D-NLDFT adsorption models for carbon slitshaped
pores with surface energetical heterogeneity and geometrical
corrugation”, Carbon, vol. 55, pp. 70-80, Apr. 2013.
[17] M. Kwiatkowski, M. Ziółkowska, J. Milewska-Duda, J. T. Duda,
“Applicability of the universal uniBET adsorption theory to silica gel
structure description”, in Proc. Science and Technology Conference
“Mineral Sorbents”: Raw Materials, Energy, Environment, Modern
Technologies, Cracow, 2013, pp. 269-284.
[18] M. Ziółkowska, J. T. Duda, J. Milewska-Duda, M. Kwiatkowski,
“Applicability of mathematical description of adsorption measurements
and adsorption mechanism in prediction of gas deposits in microporous
materials”, in Proc. International Forum – Contest: Topical Issues of
Rational Use of Natural Resources, Saint Petersburg, 2014, pp. 44-46.
[19] P.J. Flory, Principles of Polymer Chemistry, Cornell University Press,
Ithaca, NY, 1953.
[20] D. W. van Krevelen, Coal: Typology, Physics, Chemistry, Constitution.
Elsevier, New York, 1993.
[21] Chemical Engineering and Materials Research Center (CHERIC), online,
26.07.2014: http://www.cheric.org.
[22] W. A. Steele,” The physical interaction of gases with crystalline solids I.
Gas-solid energies and properties of isolated adsorbed atoms”, Surf.
Sci.vol. 36, pp. 317-352, Apr. 1973.
[23] J. Milewska-Duda, Jan Duda, G. Jodłowski, M. Wójcik, „A new state
equation for sorptives in near-critical and overcritical temperature
regions”, Langmuir, vol. 16, pp. 6601-6612, Jul. 2000.
[24] J. Milewska-Duda, Jan Duda, „High-accuracy PVT relationship for
compressed fluids and their application to BET-like modelling of CO2
and CH4 adsorption”, Adsorpt. Sci. Technol., vol. 25, pp. 543-559, 2007.
[25] M. Kaukonen, A. Gulans, P. Havu, E. Kauppinen, “Lennard-Jones
Parameters for Small Diameter Carbon Nanotubes and Water for
Molecular Mechanics Simulations from van der Waals Density
Functional Calculations”, J. Comput. Chem., vol. 33, pp. 652–658, Jan.
2012.