Evaluation of Bioactive Phenols in Blueberries from Different Cultivars

Blueberries are widely valued for their high content in
phenolic compounds with antioxidant activity, and hence beneficial
for the human health. In this way, a study was done to determine the
phenolic composition (total phenols, anthocyanins and tannins) and
antioxidant activity of blueberries from three cultivars (Duke,
Bluecrop, and Ozarkblue) grown in two different Portuguese farms.
Initially two successive extractions were done with methanol
followed by two extractions with aqueous acetone solutions. These
extracts obtained were then used to evaluate the amount of phenolic
compounds and the antioxidant activity. The total phenols were
observed to vary from 4.9 to 8.2 mg GAE/g fresh weight, with
anthocyanin’s contents in the range 1.5-2.8 mg EMv3G/g and tannins
contents in the range 1.5- 3.8 mg/g. The results for antioxidant
activity ranged from 9.3 to 23.2 molTE/g and from 24.7 to 53.4molTE/g, when measured, respectively, by DPPH and ABTS
methods. In conclusion it was observed that, in general, the cultivar
had a visible effect on the phenols present, and furthermore, the
geographical origin showed relevance either in the phenols contents
or the antioxidant activity.





References:
[1] J. Paes, R. Dotta, G. F. Barbero, and J. Martínez, “Extraction of phenolic
compounds and anthocyanins from blueberry (Vaccinium myrtillus L.)
residues using supercritical CO2 and pressurized liquids,” The Journal
of Supercritical Fluids, vol. 95, pp. 8–16, Nov. 2014.
[2] K. Gündüz, S. Serçe, and J. F. Hancock, “Variation among highbush and
rabbiteye cultivars of blueberry for fruit quality and phytochemical
characteristics,” Journal of Food Composition and Analysis, vol. 38, pp.
69–79, Mar. 2015.
[3] E. Rodrigues, N. Poerner, I. I. Rockenbach, L. V. Gonzaga, C. R.
Mendes, and R. Fett, “Phenolic compounds and antioxidant activity of
blueberry cultivars grown in Brazil,” Food Science and Technology
(Campinas), vol. 31, no. 4, pp. 911–917, Dec. 2011.
[4] A. M. Connor, J. J. Luby, J. F. Hancock, S. Berkheimer, and E. J.
Hanson, “Changes in fruit antioxidant activity among blueberry cultivars
during cold-temperature storage,” J. Agric. Food Chem., vol. 50, no. 4,
pp. 893–898, Feb. 2002.
[5] Q. Zhou, C. Zhang, S. Cheng, B. Wei, X. Liu, and S. Ji, “Changes in
energy metabolism accompanying pitting in blueberries stored at low
temperature,” Food Chemistry, vol. 164, pp. 493–501, Dec. 2014.
[6] A. D. R. Castrejón, I. Eichholz, S. Rohn, L. W. Kroh, and S. Huyskens-
Keil, “Phenolic profile and antioxidant activity of highbush blueberry
(Vaccinium corymbosum L.) during fruit maturation and ripening,” Food
Chemistry, vol. 109, no. 3, pp. 564–572, Aug. 2008.
[7] K. A. Youdim, B. Shukitt-Hale, A. Martin, H. Wang, N. Denisova, P. C.
Bickford, and J. A. Joseph, “Short-Term Dietary Supplementation of
Blueberry Polyphenolics: Beneficial Effects on Aging Brain
Performance and Peripheral Tissue Function,” Nutritional Neuroscience,
vol. 3, no. 6, pp. 383–397, 2000.
[8] G. D. Stoner, L.-S. Wang, and B. C. Casto, “Laboratory and clinical
studies of cancer chemoprevention by antioxidants in berries,”
Carcinogenesis, vol. 29, no. 9, pp. 1665–1674, Sep. 2008.
[9] S. Norberto, S. Silva, M. Meireles, A. Faria, M. Pintado, and C. Calhau,
“Blueberry anthocyanins in health promotion: A metabolic overview,”
Journal of Functional Foods, vol. 5, no. 4, pp. 1518–1528, Oct. 2013.
[10] G. Borges, A. Degeneve, W. Mullen, and A. Crozier, “Identification of
Flavonoid and Phenolic Antioxidants in Black Currants, Blueberries,
Raspberries, Red Currants, and Cranberries†,” J. Agric. Food Chem.,
vol. 58, no. 7, pp. 3901–3909, 2009.
[11] A. Karlsen, I. Paur, S. K. Bøhn, A. K. Sakhi, G. I. Borge, M. Serafini, I.
Erlund, P. Laake, S. Tonstad, and R. Blomhoff, “Bilberry juice
modulates plasma concentration of NF-kappaB related inflammatory
markers in subjects at increased risk of CVD,” Eur J Nutr, vol. 49, no. 6,
pp. 345–355, Sep. 2010.
[12] M. E. Schreckinger, J. Wang, G. Yousef, M. A. Lila, and E. Gonzalez de
Mejia, “Antioxidant Capacity and in Vitro Inhibition of Adipogenesis
and Inflammation by Phenolic Extracts of Vaccinium floribundum and
Aristotelia chilensis,” J. Agric. Food Chem., vol. 58, no. 16, pp. 8966–
8976, 2010.
[13] J. DeFuria, G. Bennett, K. J. Strissel, J. W. Perfield, P. E. Milbury, A. S.
Greenberg, and M. S. Obin, “Dietary blueberry attenuates whole-body
insulin resistance in high fat-fed mice by reducing adipocyte death and
its inflammatory sequelae,” J. Nutr., vol. 139, no. 8, pp. 1510–1516,
Aug. 2009.
[14] A. Faria, D. Pestana, D. Teixeira, V. de Freitas, N. Mateus, and C.
Calhau, “Blueberry anthocyanins and pyruvic acid adducts: anticancer
properties in breast cancer cell lines,” Phytother Res, vol. 24, no. 12, pp.
1862–1869, Dec. 2010.
[15] L. A. Pacheco-Palencia, S. U. Mertens-Talcott, and S. T. Talcott, “In
vitro absorption and antiproliferative activities of monomeric and
polymeric anthocyanin fractions from açai fruit (Euterpe oleracea
Mart.),” Food Chemistry, vol. 119, no. 3, pp. 1071–1078, Apr. 2010.
[16] S. Wang, N. Moustaid-Moussa, L. Chen, H. Mo, A. Shastri, R. Su, P.
Bapat, I. Kwun, and C.-L. Shen, “Novel insights of dietary polyphenols
and obesity,” J. Nutr. Biochem., vol. 25, no. 1, pp. 1–18, Jan. 2014.
[17] M. Meydani and S. T. Hasan, “Dietary Polyphenols and Obesity,”
Nutrients, vol. 2, no. 7, pp. 737–751, Jul. 2010.
[18] D. Barros, O. B. Amaral, I. Izquierdo, L. Geracitano, M. do Carmo
Bassols Raseira, A. T. Henriques, and M. R. Ramirez, “Behavioral and
genoprotective effects of Vaccinium berries intake in mice,” Pharmacol.
Biochem. Behav., vol. 84, no. 2, pp. 229–234, Jun. 2006.
[19] S. Y. Wang, H. Chen, M. J. Camp, and M. K. Ehlenfeldt, “Genotype and
growing season influence blueberry antioxidant capacity and other
quality attributes,” International Journal of Food Science & Technology,
vol. 47, no. 7, pp. 1540–1549, Jul. 2012.
[20] P. B. Pertuzatti, M. T. Barcia, D. Rodrigues, P. N. da Cruz, I. Hermosín-
Gutiérrez, R. Smith, and H. T. Godoy, “Antioxidant activity of
hydrophilic and lipophilic extracts of Brazilian blueberries,” Food
Chemistry, vol. 164, pp. 81–88, Dec. 2014.
[21] P. B. Pertuzatti, M. T. Barcia, A. C. Jacques, M. Vizzotto, H. T. Godoy,
and R. C. Zambiazi, “Quantification of Several Bioactive Compounds
and Antioxidant Activities of Six Cultivars of Brazilian Blueberry,” The
Natural Products Journal, vol. 2, no. 3, pp. 188–195, Sep. 2012.
[22] M. T. Barcia, A. C. Jacques, P. B. Pertuzatti, and R. C. Zambiazi,
“Determination by HPLC of ascorbic acid and tocopherols in fruits,”
Semina: Ciências Agrárias, vol. 31, pp. 381–390, 2010.
[23] W. Kalt, J. e. McDonald, and H. Donner, “Anthocyanins, Phenolics, and
Antioxidant Capacity of Processed Lowbush Blueberry Products,”
Journal of Food Science, vol. 65, no. 3, pp. 390–393, Apr. 2000.
[24] L. Gao and G. Mazza, “Quantitation and Distribution of Simple and
Acylated Anthocyanins and Other Phenolics in Blueberries,” Journal of
Food Science, vol. 59, no. 5, pp. 1057–1059, Sep. 1994.
[25] H. Böhm, “G. Mazza und E. Miniati: Anthocyanins in Fruits, Vegetables
and Grains. 362 Seiten, zahlr. Abb. und Tab. CRC Press, Boca Raton,
Ann Arbor, London, Tokyo 1993. Preis: 144.— £,” Nahrung, vol. 38,
no. 3, pp. 343–343, Jan. 1994.
[26] R. Zadernowski, M. Naczk, and J. Nesterowicz, “Phenolic Acid Profiles
in Some Small Berries,” J. Agric. Food Chem., vol. 53, no. 6, pp. 2118–
2124, Mar. 2005.
[27] A. Howell, W. Kalt, J. C. Duy, C. F. Forney, and J. E. McDonald,
“Horticultural Factors Affecting Antioxidant Capacity of Blueberries
and other Small Fruit,” HortTechnology, vol. 11, no. 4, pp. 523–528,
Jan. 2001.
[28] D. Ferreira, S. Guyot, N. Marnet, I. Delgadillo, C. M. G. C. Renard, and
M. A. Coimbra, “Composition of phenolic compounds in a Portuguese
pear (Pyrus communis L. var. S. Bartolomeu) and changes after sundrying,”
J. Agric. Food Chem., vol. 50, no. 16, pp. 4537–4544, Jul.
2002.
[29] F. J. Gonçalves, S. M. Rocha, and M. A. Coimbra, “Study of the
retention capacity of anthocyanins by wine polymeric material,” Food
Chem, vol. 134, no. 2, pp. 957–963, Sep. 2012.
[30] R. Boulton, “The Copigmentation of Anthocyanins and Its Role in the
Color of Red Wine: A Critical Review,” Am. J. Enol. Vitic., vol. 52, no.
2, pp. 67–87, Jan. 2001.
[31] P. Ribereau-Gayon and E. Stonestreet, “Dosage des tanins du vin rouge
et determination de leur structure,” Chimie Anal, vol. 48, pp. 188–196,
1966.
[32] W. Brand-Williams, M. E. Cuvelier, and C. Berset, “Use of a free
radical method to evaluate antioxidant activity,” LWT - Food Science
and Technology, vol. 28, no. 1, pp. 25–30, 1995.
[33] N. J. Miller, C. Rice-Evans, M. J. Davies, V. Gopinathan, and A. Milner,
“A novel method for measuring antioxidant capacity and its application
to monitoring the antioxidant status in premature neonates,” Clin. Sci.,
vol. 84, no. 4, pp. 407–412, Apr. 1993.
[34] L. C. Spagolla, M. M. Santos, L. M. L. Passos, and C. L. Aguiar,
“Extração alcoólica de fenólicos e flavonóides totais de mirtilo
Rabbiteye (Vaccinium ashei) e sua atividade antioxidante,” Rev. Ciênc.
Farm. Básica Apl., vol. 30, no. 2, pp. 59–64, 2009.
[35] V. Dragović-Uzelac, Z. Savić, A. Brala, B. Levaj, D. B. Kovačević, and
A. Biško, “Evaluation of Phenolic Content and Antioxidant Capacity of
Blueberry Cultivars (Vaccinium corymbosum L.) Grown in the
Northwest Croatia,” Food Technology and Biotechnology, vol. 48, no. 2,
pp. 214–221, 2010.
[36] F. I. G. Rocha, Avaliação da cor e da actividade antioxidante da polpa e
extracto de mirtilo (Vaccinium myrtillus) em Pó. Dissertação para
obtenção de grau Mestre. Minas gerais, Brasil: Universidade Viçosa,
2009.