Design and Control of an Integrated Plant for Simultaneous Production of γ-Butyrolactone and 2-Methyl Furan

The design and plantwide control of an integrated
plant where the endothermic 1,4-butanediol dehydrogenation and the
exothermic furfural hydrogenation is simultaneously performed in a
single reactor is studied. The reactions can be carried out in an
adiabatic reactor using small hydrogen excess and with reduced
parameter sensitivity. The plant is robust and flexible enough to
allow different production rates of γ-butyrolactone and 2-methyl
furan, keeping high product purities. Rigorous steady state and
dynamic simulations performed in AspenPlus and AspenDynamics to
support the conclusions.





References:
[1] G. Towler, S. Lynn, “Novel applications of reaction coupling: use of
carbon dioxide to shift the equilibrium of dehydrogenation reactions”,
Chem. Eng. Sci., vol. 49, no. 16, pp. 2585-2591, 1994.
[2] P. Altimari, C. S. Bildea, “Coupling Exothermic and Endothermic
Reactions in Plug-Flow Reactor−Separation−Recycle Systems”, Ind.
Eng. Chem. Res., vol. 47, no. 17, pp. 6685-6697, 2008.
[3] M. R. Rahimpour, M. R. Dehnavi, F. Allahgholipour, D. Iranshahi, S.
M. Jokar, “Assessment and comparison of different catalytic coupling
exothermic and endothermic reactions: A review”, Applied Energy, vol.
99, pp. 496-512, 2012.
[4] C. V. Pramod, C. Raghavendra, K. Hari Prasad Reddy, G. V. Ramesh
Babu, K. S. Rama Rao, B. David Raju, “Concept and progress in
coupling of dehydrogenation and hydrogenation reactions through
catalysts”, Journal of Chemical Sciences, vol. 126, no. 2, pp. 311-317,
2014.
[5] M. Messori, A. Vaccari, “Reaction Pathway in Vapor Phase
Hydrogenation of Maleic Anhydride and Its Esters to γ-Butyrolactone”,
Journal of Catalysis, vol. 150, no. 1, pp. 177-185, 1994.
[6] Kirk–Othmer’s Encylopedia of Chemical Technology, Eds. R. E. Kirk,
F. Othmer, J. I. Kroschwitz, M. Howe-Grant, 2nd ed., New York, John
Wiley & Sons, 1991.
[7] K. Utsunomiya, K. Takahashi, T. Oshiki, K. Takai, Mitsubishi Kagaku
K. K. Jpn. Kokai Tokkyo Koho, JP14-233762, 2002.
[8] H. Koyama, Daicel Kagaku Kougyou K. K. Jpn. Kokai Tokkyo Koho,
JP02-255668, 1990.
[9] R. S. Rao, R. T. K. Baker, M. A. Vannice, “Furfural hydrogenation over
carbon‐supported copper”, Catalysis Letters, vol. 60, no. 1-2, pp. 51-57,
1999.
[10] Y.L. Zhu, H.W. Xiang, Y.W. Li, H. Jiao, G.S. Wu, B. Zhong and G.Q.
Guoc, “A new strategy for the efficient synthesis of 2-methylfuran and
γ-butyrolactone”, New Journal of Chemistry, vol. 27, pp. 208-210, 2003.
[11] N. Merat, C. Godawa and A. Gaset, “High selective production of
tetrahydrofurfuryl alcohol: Catalytic hydrogenation of furfural and furfuryl alcohol”, Journal of Chemical Technology and Biotechnology,
vol. 48, no. 2, pp. 145-159, 1999.
[12] H. Y. Zheng, J. Yang, Y.L. Zhu, G.W. Zhao, “Synthesis of gbutyrolactone
and 2-methylfuran through the coupling of
dehydrogenation and hydrogenation over copper-chromite catalyst”,
React. Kinet. Catal. Lett, vol. 82, no. 2, pp. 263-269, 2004.
[13] J. G. M. Bremner, R. K. F. Keeys, “The hydrogenation of furfuraldehyde
to furfuryl alcohol and sylvan (2-methylfuran)”, Journal of Chemical
Society, pp. 1068-1080, 1947.
[14] I. Tatsumi, K. Kenji, S. Sadakatsu, U. Hiroshi, Euro Patent, 584408,
1994.
[15] ASPENTECH, AspenPlus Getting Started Building and Running a
Process Model, ASPEN Technology, Burlington, 2010.
[16] ASPENTECH, AspenDynamics User Guide, ASPEN Technology,
Burlington, 2009.
[17] N. Ichikawa, S. Sato, R. Takahashi, T. Sodesawa, K. Inui,
“Dehydrogenative cyclization of 1,4-butanediol over copper-based
catalyst”, Journal of Molecular Catalysis A: Chemical, vol. 212, no. 1-2,
pp. 197-203, 2004.
[18] S. Sitthisa, T. Sooknoi, Y. Ma, P. B. Balbuena, D. E. Resasco, “Kinetics
and mechanism of hydrogenation of furfural on Cu-SiO2 catalysts”,
Journal of Catalysis, vol. 277, pp. 1-13, 2011.
[19] P. Altimari, C. S. Bildea, “Integrated design and control of plantwide
systems coupling exothermic and endothermic reactions”, Computers &
Chemical Engineering, vol. 33, no. 4, pp. 911 – 923, 2009.
[20] C. S. Bildea, A. C. Dimian, “Fixing Flow Rates in Recycle Systems:
Luyben's Rule Revisited”, Industrial & Engineering Chemical Research,
vol. 42, no. 20, pp. 4578-4585, 2003.
[21] Practical Distillation Control, Ed. W. L. Lyben, New York, Springer,
1993.