Coupling Concept of two Parallel Research Codes for Two and Three Dimensional Fluid Structure Interaction Analysis

This paper discuss a coupling strategy of two different
software packages to provide fluid structure interaction (FSI) analysis.
The basic idea is to combine the advantages of the two codes
to create a powerful FSI solver for two and three dimensional
analysis. The fluid part is computed by a program called PETSc-FEM
a software developed at Centro de Investigaci´on de M´etodos
Computacionales –CIMEC. The structural part of the coupled process
is computed by the research code elementary Parallel Solver –
(ELPASO) of the Technische Universit¨at Braunschweig, Institut f¨ur
Konstruktionstechnik (IK).





References:
[1] Satish Balay, Jed Brown, Kris Buschelman, Victor Eijkhout, William D.
Gropp, Dinesh Kaushik, Matthew G. Knepley, Lois Curfman McInnes,
Barry F. Smith, and Hong Zhang. PETSc users manual. Technical
Report ANL-95/11 - Revision 3.2, Argonne National Laboratory, 2011.
[2] Satish Balay, Jed Brown, Kris Buschelman, William D. Gropp, Dinesh
Kaushik, Matthew G. Knepley, Lois Curfman McInnes, Barry F. Smith,
and Hong Zhang. PETSc Web page. http://www.mcs.anl.gov/petsc,
2011.
[3] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F.
Smith. Efficient management of parallelism in object oriented numerical
software libraries. In E. Arge, A. M. Bruaset, and H. P. Langtangen,
editors, Modern Software Tools in Scientific Computing, pages 163–202.
Birkh¨auser Press, 1997.
[4] Silja Beck, Dirk Clasen, Lutz Lehmann, Katherina Rurkowska, Marco
Schauer, and Meike Wulkau. ELPASO – manual. Technical Report
Revision: 369, TU Braunschweig, Institut f¨ur Angewandte Mechanik
(2008–2013), Institut f¨ur Konstruktionstechnik (since 2013), 2008–2014.
https://www.tu-braunschweig.de/ik
[5] C. Farhat, M. Lesoinne, and N. Maman. Mixed explicit/implicit time
integration of coupled aeroelastic problems: Three-field formulation,
geometric conservation and distributed solution. International Journal
for Numerical Methods in Fluids, 21:(10):807–835, 1995.
[6] L. Garelli. Fluid Structure Interaction using an Arbitrary Lagrangian
Eulerian Formulation. PhD thesis, Facultad de Ingenier´ıa y Ciencias
H´ıdricas, 2011.
[7] E. Lopez, NM. Nigro, MA. Storti, and J. Toth. A minimal element
distortion strategy for computational mesh dynamics. International
Journal for Numerical Methods in Engineering., 69:9:1898–1929, 2007.
[8] MPI Forum. The Message Passing Interface (MPI) standard.
http://www.mcs.anl.gov/mpi, 1994.
[9] N. Newmark. A method of computation for structural dynamics. Journal
of Engineering Mechanics Division, 85:67, 1959.
[10] S. Piperno. Explicit/implicit fluid/structure staggered procedures with
a structural predictor and fluid subcycling for 2d inviscid aeroelastic
simulations. International Journal for Numerical Methods in Fluids,
25(10):1207–1226, 1997.
[11] M. Storti, N. Nigro, R. Paz, L. Dalc´ın, L. Battaglia, E. L´opez, and
G.A. R´ıos Rodriguez. PETSc-FEM, A General Purpose, Parallel,
Multi-Physics FEM Program. CIMEC-CONICET-UNL, 1999-2010.
http://www.cimec.org.ar/petscfem.
[12] K. Rurkowska, M. Schauer, S. Langer. On Neumann - Dirichlet
coupling strategy of Finite Element and Boundary Element method in
elastodynamics Proceedings in Applied Mathematics and Mechanics,
11, 256–266, 2011
[13] Marco Schauer, Jose E. Roman, Enrique S. Quintana-Ort´ı, Sabine
Langer. Parallel Computation of 3-D Soil-Structure Interaction in Time
Domain with a Coupled FEM/SBFEM Approach Journal of Scientific
Computing, 52, 446–467, 2012
[14] M. Schauer, S. Langer, J.E. Roman, E.S. Quintana-Ort. Large Scale
Simulation of Wave Propagation in Soils Interacting with Structures with
the SBFEM Method Journal of Computational Acoustics, 19, (1), 75–93,
2011