Continuum-Based Modelling Approaches for Cell Mechanics

The quantitative study of cell mechanics is of paramount interest, since it regulates the behaviour of the living cells in response to the myriad of extracellular and intracellular mechanical stimuli. The novel experimental techniques together with robust computational approaches have given rise to new theories and models, which describe cell mechanics as combination of biomechanical and biochemical processes. This review paper encapsulates the existing continuum-based computational approaches that have been developed for interpreting the mechanical responses of living cells under different loading and boundary conditions. The salient features and drawbacks of each model are discussed from both structural and biological points of view. This discussion can contribute to the development of even more precise and realistic computational models of cell mechanics based on continuum approaches or on their combination with microstructural approaches, which in turn may provide a better understanding of mechanotransduction in living cells.




References:
[1] Yeung, E. Evans, “Cortical Shell-Liquid Core Model for Passive Flow
of Liquid-Like Spherical Cells into Micropipets,” Biophys J., vol. 56,
no. 1, pp. 139–149, 1989.
[2] C. Dong, R. Skalak, and K. L. Sung, “Cytoplasmic Rheology of Passive
Neutrophils,” Biorheology, vol. 28, no. 6, pp. 557–567, 1991.
[3] M. A. Tsai, R. S. Frank, and R. E. Waugh, “Passive Mechanical
Behaviour of Human Neutrophils: Power-Law fluid,” Biophysical
Journal, vol. 65, no. 5, pp. 2078–2088, 1993.
[4] C. Dong, R. Skalak, K. L. Sung, G. W. Schmid-Schonbein, and S.
Chien, “Passive Deformation Analysis of Human Leukocytes,” Journal
of Biomechanical Engineering, vol. 110, no. 1, pp. 27–36, 1988.
[5] B. Fabry, G. Maksym, J. Butler, M. Glougauer, D. Navajas, and J.
Fredberg, “Scaling the Microrheology of Living Cells,” The American
Physical Society, vol. 87, no. 14, pp. 148102, 2001.
[6] V. S. Deshpande, R. M. McMeeking, and A. G. Evans, “A Bio-Chemo-
Mechanical Model for Cell Contractility,” Proc. Natl. Acad. Sci. U.S.A,
vol. 103, no. 38, pp. 14015–14020, 2006.
[7] R. Blumenfeld, “Isostaticity and Controlled Force Transmission in the
Cytoskeleton: A Model Awaiting Experimental Evidence,” Biophys
Journal, vol. 91, pp. 1970-1983, 2006.
[8] F. C. Mackintosh, J. Kas, and P. A. Janmey, “Elasticity of Semi-flexible
Biopolymer Networks,” Phys. Rev. Lett., vol. 75, no. 24, pp. 4425–
4428, 1995.
[9] P. Onck, T. Koeman, T. van Dillen, and E. van der Giessen, “Alternative
Explanation of Stiffening in Cross-Linked Semi-flexible Networks,”
Phys. Rev. Lett., vol. 95, pp. 178102, 2005.
[10] D. Head, A. Levine, and F. MacKintosh, “Distinct Regimes of Elastic
Response and Deformation Modes of Cross-Linked Cytoskeletal and
Semi-flexible Polymer Networks,” Phys. Rev. E, vol. 68, pp. 061907,
2003.
[11] H. Isambert, A. Maggs, “Dynamics and Rheology of Actin Solutions,”
Macromolecules, vol. 29, no. 3, pp. 1036-1040, 1996.
[12] T. Kim, W. Hwang, and R. Kamm, “Computational Analysis of a Cross-
Linked Actin-Like Network,” Experimental Mechanics, vol. 49, no. 1,
pp. 91-104, 2009.
[13] M. Coughlin, D. Stamenovic, “A Prestressed Cable Network Model of
the Adherent Cell Cytoskeleton,” Biophysical Journal, vol. 84, no. (2 Pt
1), pp. 1328-1336, 2003.
[14] D. Stamenovic, M. Coughin, “The Role of Prestress and Architecture of
the Cytoskeleton and Deformability of Cytoskeletal Filaments in
Mechanics of Adherent Cells: A Quantitative Analysis,” Journal of
Theoretical Biology, vol. 201, no. 1, pp. 63-74, 1999.
[15] D. E. Ingber, “Cellular Tensegrity—Defining New Rules of Biological
Design that Govern the Cytoskeleton,” J. Cell Sci., vol. 104, pp. 613–
627, 1993.
[16] J. Milan, S. Wendling-Mansuy, M. Jean, and P. Chabrand, “Divided
Medium-Based Model for Analyzing the Dynamic Reorganization of the
Cytoskeleton during Cell Deformation,” Biomech Model Mechanobiol,
vol. 6, no. 6, pp. 373–390, 2007.
[17] B. Maurin, P. Canadas, H. Baudriller, P. Montcourrier, and N. Bettache,
“Mechanical Model of Cytoskeleton Structuration during Cell Adhesion
and Spreading,” Journal of Biomechanics, vol. 41, no. 9, pp. 2036-2041,
2008.
[18] C. S. Peskin, G. M. Odell, and G. F. Oster, “Cellular Motions and
Thermal Fluctuations: The Brownian Ratchet,” Biophysical Journal, vol.
65, pp. 316–324, 1993.
[19] A. Mogilner, G. Oster, “Cell Motility Driven by Actin Polymerization,”
Biophysical Journal, vol. 71 no. 6, pp. 3030-3045, 1996.
[20] A. Zemel, I, Bischofs, and S. Safran, “Active Elasticity of Gels with
Contractile Cells,” Physical Review Letters, vol. 97, no. 12, pp. 128103,
2006.
[21] R. De, A. Zemel, and S. A. Safran, “Dynamics of Cell Orientation,”
Nature Physics, vol. 3, pp. 655, 2007.
[22] R. Kaunas, H. J. Hsu, “A Kinematic Model of Stretch-Induced Stress
Fiber Turnover and Reorientation,” Journal of Theoretical Biology, vol.
257, no. 2, pp. 320–330, 2009.
[23] F. J. Vernerey, M. Farsad, “A Constrained Mixture Approach to
Mechano-Sensing and Force Generation in Contractile Cells,” J. Mech.
Behav. Biomed. Mater., vol. 4, no. 8, pp. 1683–1699, 2011.
[24] M. Maraldi, K. Garikipati, “The Mechanochemistry of Cytoskeletal
Force Generation,” Biomechanics and Modeling in Mechanobiology,
vol. 14, pp. 59-72, 2015.
[25] J. Li, M. Dao, C. T. Lim, and S. Suresh, “Spectrin-Level Modeling of
the Cytoskeleton and Optical Tweezer Stretching of the Erythrocyte,”
Biophysical Journal, vol. 88, pp. 3707 -3719, 2005.
[26] X. Li, Z. Peng, H. Lei, M. Dao, and G. E. Karniadakis, “Probing Red
Blood Cell Mechanics, Rheology and Dynamics with a Two-Component
Multi-Scale Model,” Phil. Trans. R. Soc. A, vol. 372, pp. 20130389,
2014.
[27] J. Satcher, C. Dewey, “Theoretical Estimates of Mechanical Properties
of the Endothelial Cell Cytoskeleton,” Biophysical Journal, vol. 71, no.
1, pp. 109–118, 1996.
[28] G. Forgacs, “Commentary on the Possible Role of Cytoskeletal
Filamentous Network in Intracellular Signalling: An Approach Based on
Percolation,” Journal of Cell Science, vol. 108, pp. 2131-2143, 1995.
[29] D. Stamenovic, S. Mijailovich, I. Norrelkykke, J. Chen, and N. Wang,
“Cell Prestress. II. Contribution of Microtubules,” The American
Physiological Society, vol. 282, pp. C617-C624, 2002b.
[30] Vaziri, A. Gopinath, “Cell and Biomolecular Mechanics in Silico,”
Nature Materials, vol. 7, pp. 15 – 23, 2008.
[31] C. T. Lim, E. H. Zhou, and S. T. Quek, “Mechanical Models for Living
Cells-A Review,” J. Biomech, vol. 39, no. 2, pp. 195–216, 2006.
[32] D. Needham, R. M. Hochmuth, “Rapid Flow of Passive Neutrophils into
a 4 Microns Pipet and Measurement of Cytoplasmic Viscosity,” ASME
J. Biomech. Eng, vol. 112, no. 3, pp. 269–276, 1990.
[33] E. Evans, A. Yeung, “Apparent Viscosity and Cortical Tension of Blood
Granulocytes Determined by Micropipet Aspiration,” Biophys J., vol.
56, no. 1, pp. 151–160, 1989.
[34] R. Tran-Son-Tay, D. Needham, A. Yeung, and R. M. Hochmuth, “Time-
Dependent Recovery of Passive Neutrophils after Large Deformation,”
Biophys J., vol. 60, no. 4, pp. 856–866, 1991.
[35] R. M. Hochmuth, H. P. Ting-Beall, B. B. Beaty, D. Needham, and R.
Tran- Son-Tay. “Viscosity of Passive Human Neutrophils Undergoing
Small Deformations,” Biophysical Journal, vol. 64, no. 5, pp. 1596–
1601, 1993b.
[36] D. Needham, R. Hochmuth, “A Sensitive Measure of Surface Stress in
the Resting Neutrophil,” Biophys J., vol. 61, no. 6, pp. 1664–1670,
1992.
[37] F. Guilak, J. R. Tedrow, and R. Burgkart, “Viscoelastic Properties of the
Cell Nucleus,” Biochemical and Biophysical Research Communications,
vol. 269, no. 3, pp. 781–786, 2000.
[38] N. Caille, O. Thoumine, Y. Tardy, and J. J. Meister, “Contribution of the
Nucleus to the Mechanical Properties of Endothelial Cells,” Journal of
Biomechanics, vol. 35, no. 2, pp. 177–187, 2002.
[39] A. J. Maniotis, C. S. Chen, and D. E. Ingber, “Demonstration of
Mechanical Connections between Integrins, Cytoskeletal Filaments, and
Nucleoplasm that Stabilize Nuclear Structure,” Proceeding of the
National Academy of Sciences of the United States of America, vol. 94,
pp. 849–854, 1997a. [40] H. C. Kan, H. S. Udaykumar, W. Shyy, and R. Tran-Son-Tay,
“Hydrodynamics of a Compound Drop with Application to Leukocyte
Modelling,” Physics of Fluids, vol. 10, no. 4, pp. 760–774, 1998.
[41] R. Tran-Son-Tay, H. C. Kan, H. S. Udaykumar, E. Damay, and W.
Shyy, “Rheological Modelling of Leukocytes,” Medical & Biological
Engineering & Computing, vol. 36, no. 2, pp. 246–250, 1998.
[42] H. C. Kan, W. Shyy, H. S. Udaykumar, P. Vigneron, and R. Tran-Son-
Tay, “Effects of nucleus on leukocyte recovery,” Annals of Biomedical
Engineering, vol. 27, no. 5, pp. 648–655, 1999.
[43] J. L. Drury, M. Dembo, “Aspiration of Human Neutrophils: Effects of
Shear Thinning and Cortical Dissipation,” Biophysical Journal, vol. 81,
no. 6, pp. 3166–3177, 2001.
[44] M. Rodriguez, N. J. Sniadecki, In Computational Modelling of
Biomechanics in the Musculoskeletal System: Tissues, Replacements
and Regeneration. 1st ed. Woodhead Publishing, 2014.
[45] B. Fabry, G. N. Maksym, J. P. Butler, M. Glogauer, Navajas D, N. A.
Taback, E. J. Millet, J. J. Fredberg, “Time Scale and Other Invariants of
Integrative Mechanical Behaviour in Living Cells,” Physical Review E,
vol. 68, no 4, pp. 041914, 2003.
[46] C. Dong, R. Skalak, “Leukocyte Deformability: finite Element Modeling
of Large Viscoelastic Deformation,” Journal of Theoretical Biology, vol.
158, no. 2, pp. 173–193, 1992.
[47] R. M. Hochmuth, “Measuring the Mechanical Properties of Individual
Human Blood Cells,” ASME J. Biomech. Eng, vol. 115, no. 4B, pp.
515–519, 1993.
[48] M. Mofrad, H. Karcher, and R. Kamm, “Continuum Elastic or
Viscoelastic Models of the Cell,” In Cytoskeletal Mechanics models and
measurements, 1st edition, M. Mofrad, R. Kamm, Editors. USA:
Cambridge University Press, 2006; pp. 71-83.
[49] D. Theret, M. Levesque, M. Sato, R. Nerem, and L. Wheeler, “The
Application of a Homogeneous Half-Space Model in the Analysis of
Endothelial-Cell Micropipette Measurements,” ASME J Biomech Eng.,
vol. 110, pp. 190–199, 1988.
[50] M. Sato, D. P. Theret, L. T. Wheeler, N. Ohshima, and R. M. Nerem,
“Application of the Micropipette Technique to the Measurement of
Cultured Porcine Aortic Endothelial Cell Viscoelastic Properties,”
Journal of Biomechanical Engineering, vol. 112, no. 3, pp. 263–268,
1990.
[51] M. A. Haider, F. Guilak, “An Axisymmetric Boundary Integral Model
for Incompressible Linear Viscoelasticity: Application to the
Micropipette Aspiration Contact Problem,” ASME J. Biomech. Eng.,
vol. 122, no. 3, pp. 236–244, 2000.
[52] M. Rodriguez, N. Sniadecki, “Review on Cell Mechanics: Experimental
and Modelling Approaches,” Applied Mechanics Review, vol. 65, pp.
060801, 2013.
[53] J. Bursa, R. Lebis, and J. Holata, “Tensegrity Finite Element Models of
Mechanical Tests of Individual Cells,” Technology and Health Care, vol.
20, no. 2, pp. 135-150, 2012.
[54] M. M. Nava, M. T. Raimondi, R. Pietrabissa, “Bio-Chemo-Mechanical
Models for Nuclear Deformation in Adherent Eukaryotic Cells,”
Biomechanics and Modeling in Mechanobiology, vol. 13, no. 5, pp. 929-
943, 2014.
[55] S. Moreno-Flores, R. Benitez, and J. L. Toca-Herrera, “Stress Relaxation
and Creep on Living Cells with the Atomic Force Microscope: A Means
to Calculate Elastic Moduli and Viscosities of Cell Components,”
Nanotechnology, vol. 21, pp. 445101, 2010.
[56] J. McGarry, P. McHugh, “Modelling of in vitro Chondrocyte
Detachment,” J. Mech Phys Solids, vol. 56, no. 4, pp. 1554–1565, 2008.
[57] J. McGarry, “Characterization of Cell Mechanical Properties by
Computational Modeling of Parallel Plate Compression,” Ann Biomed
Eng, vol. 37, no. 11, pp. 2317–2325, 2009.
[58] P. A. Dimilla, K. Barbee, and D. A. Lauffenburger, “Mathematical
Model for the Effects of Adhesion and Mechanics on Cell Migration
Speed,” Biophys. J, vol. 60, no. 1, pp. 15–37, 1991.
[59] J. Milner, M. Grol, K. Beaucage, S. Dixon, and D. W. Holdsworth,
“Finite- Element Modeling of Viscoelastic Cells during High- Frequency
Cyclic Strain,” Journal of Funct Biomater, vol. 3, no. 1, pp. 209–224,
2012.
[60] J. Chen, “Nano-biomechanics of Living Cells: A Review,” Interface
Focus, vol. 4, no. 2, pp. 20130055, 2014.
[61] G. G. Bilodeau, “Regular Pyramid Punch Problem,” Journal of Applied
Mechanics, vol. 59, no. 3, pp. 519–523, 1992.
[62] D. Shin, K. Athanasiou, “Cytoindentation for Obtaining Cell
Biomechanical Properties,” Journal of Orthopaedic Research, vol. 17,
no. 6, pp. 880–890, 1999.
[63] S. M. Mijailovich, M. Kojic, M. Zivkovic, B. Fabry, and J. J. Fredberg,
“A finite Element Model of Cell Deformation during Magnetic Bead
Twisting,” Journal of Applied Physiology, vol. 93, no. 4, pp. 1429–1436,
2002.
[64] E. J. Koay, A. C. Shieh, and K. A. Athanasiou, “Creep Indentation of
Single Cells,” Journal of Biomechanical Engineering, vol. 125, no. 3, pp.
334–341, 2003.
[65] X. Zeng, S. Li, “Modelling and Simulation of Substrate Elasticity
Sensing in Stem Cells,” Comput Methods Biomech Biomed Eng, vol.
14, no. 5, pp. 447–458, 2011a.
[66] X. Zeng, S. Li, “Multi-scale Modeling and Simulation of Soft Adhesion
and Contact of Stem Cells,” J Mech Behav Biomed Mater, vol. 4, no. 2,
pp. 180–189, 2011b.
[67] Y. Cao, R. Bly, W. Moore, Z. Gao, A. Cuitino, and W. Soboyejo, “On
the Measurement of Human Osteosarcoma Cell Elastic Modulus Using
Shear Assay Experiment,” J Mater Sci., vol. 18, no. 1, pp. 103–109,
2007.
[68] M. Ferko, A. Bhatnagar, M. Garcia, and P. Butler, “Finite-Element
Stress Analysis of a Multicomponent Model of Sheared and Focally-
Adhered Endothelial Cells,” Ann Biomed Eng. vol. 35, no. 2, pp. 858–
859, 2007.
[69] C. Nelson, R. Jean, J. Tan, W. Liu, N. Sniadecki, A. Spector, and C.
Chen, “Emergent Patterns of Growth Controlled by Multicellular Form
and Mechanics,” Proc Natl Acad Sci USA, vol. 102, no. 33, pp. 11594–
11599, 2005.
[70] T. Ohashi, Y. Ishii, Y. Ishikawa, T. Matsumoto, and M. Sato,
“Experimental and Numerical Analyses of Local Mechanical Properties
Measured by Atomic Force Microscopy for Sheared Endothelial Cells,”
Biomed Mater Eng, vol. 12, no. 3, pp. 319–327, 2002.
[71] F. Guilak, G. Erickson, and H. Ting-Beall, “The Effects of Osmotic
Stress on the Viscoelastic and Physical Properties of Articular
Chondrocytes,” Biophysics Journal, vol. 82, no. 2, pp. 720–727, 2002.
[72] M. Sato, N. Ohshima, and R. M. Nerem, “Viscoelastic Properties of
Cultured Porcine Aortic Endothelial Cells Exposed to Shear Stress,”
Journal of Biomechanics, vol. 29, no. 4, pp. 461–467, 1996.
[73] G. W. Schmid-Schonbein, K. L. Sung, H. Tozeren, R. Skalak, and S.
Chien, “Passive Mechanical Properties of Human Leukocytes,”
Biophysical Journal, vol. 36, no. 1, pp. 243–256, 1981.
[74] J. Qiu, A. Baik, X. Lu, E. Hillman, Z. Zhuang, C. Dong, and E. Guo, “A
Non-Invasive Approach to Determine Viscoelastic Properties of an
Individual Adherent Cell Under Fluid Flow,” Journal of Biomechanics,
vol. 47, no. 6, pp. 1537–1541, 2014.
[75] P. Sollich, F. Lequeux, P. Hébraud, and M. Cates, “Rheology of Soft
Glassy Materials,” Physical Review Letters, vol. 78, no. 10, pp. 2020-
2023, 1997.
[76] P. Sollich, “Rheological Constitutive Equation for a Model of Soft
Glassy Materials,” Physical Review Letters, vol. 8, pp. 738-759, 1998.
[77] P. Bursac, G. Lenormand, B. Fabry, M. Oliver, D. A. Weitz, V.
Viasnoff, J. P. Butler, and J. J. Fredberg, “Cytoskeletal Remodelling and
Slow Dynamics in the Living Cell,” Nat Mater, vol. 4, no. 7, pp. 557-61,
2005.
[78] P. Kollmannsberger, B. Fabry, "Active Soft Glassy Rheology of
Adherent Cells," Soft Matter, vol 5, no. 9, pp, 1771-1774, 2009.
[79] B. Hoffman, J. Crocker, “Cell Mechanics: Dissecting the Physical
Responses of Cells to Force,” Annual Review of Biomedical
Engineering, vol. 11, pp. 259-288, 2009.
[80] D. Stamenovic, B. Suki, B. Fabry, N. Wang, and J. Fredberg, “Rheology
of Airway Smooth Muscle Cells is Associated with Cytoskeletal
Contractile Stress,” Journal of Appl. Physiol, vol. 96, no. 5, pp. 1600-
1605, 2004.
[81] A. Vaziri, Z. Xue, R. D. Kamm, M. R. Mofrad, “A Computational Study
on Power-Law Rheology of Soft Glassy Materials with Application to
Cell Mechanics,” Computer Methods in Applied Mechanics and
Engineering, vol. 196, no. 31–32, pp. 2965–2971, 2007.
[82] E. H. Zhou, F. Xu, S. T. Quek, and C. T. Lim, “A Power-Law Rheology-
Based Finite Element Model for Single Cell Deformation,” Biomech
Model Mechanobiol, vol. 11, no. 7, pp. 1075-84, 2012.
[83] J. Alcaraz, L. Buscemi, M. Grabulosa, X. Trepat, B. Fabry, R. Farre, and
D. Navajas, Microrheology of Human Lung Epithelial Cells Measured
by Atomic Force Microscopy,” Biophys. J, vol. 84, no. 3, pp. 2071–
2079, 2003.
[84] M. R. Mofrad, “Rheology of the Cytoskeleton,” Annu. Rev. Fluid Mech,
vol. 41, pp. 433-453, 2009.
[85] D. Stamenovic, N. Rosenblatt, M. Montoya-Zavala, B. Matthews, S. Hu,
B. Suki, N. Wang, and D. Ingber, “Rheological Behaviour of Living Cells is Timescale-Dependent,” Biophysical Journal, vol. 93, no. 8, pp.
39–41, 2007.
[86] K. Mandadapu, S. Govindjee, and M. Mofrad, “On the Cytoskeleton and
Soft Glassy Rheology,” Journal of Biomechanics, vol. 41, no. 7, pp.
1467-1478, 2008.
[87] P. Kollmannsberger, B. Fabry, “Linear and Nonlinear Rheology of
Living Cells,” Annual Review of Materials Research, vol. 41, pp. 75-97,
2011.
[88] D. Wirtz, “Particle-Tracking Microrheology of Living Cells: Principles
and Applications,” Annual Review of Biophysics, vol. 38, pp. 301-326,
2009.
[89] R. Pritchard, Y. Huang, and E. Terentjev, “Mechanics of Biological
Networks: From the Cell Cytoskeleton to Connective Tissue,” Soft
Matter, vol. 10, pp. 1864-1884, 2014.
[90] E. Moeendarbary, A. R. Harris, “Cell Mechanics: Principles, Practices,
and Prospects,” WIREs Syst Biol Med, vol. 6, pp. 371–388, 2014.
[91] F. Guilak, M. Haider, L. Setton, T. Laursen, and F. Baaijens.
“Multiphasic Models of the Cell Mechanics,” in Cytoskeletal Mechanics
Models and Measurements, M. Mofrad, R. Kamm, editors. USA:
Cambridge University Press. 2006, pp. 84-102.
[92] F. Guilak, V. C. Mow, “The Mechanical Environment of the
Chondrocyte: a Biphasic finite Element Model of Cell–Matrix
Interactions in Articular Cartilage,” Journal of Biomechanics, vol. 33,
no. 12, pp. 1663–1673, 2000.
[93] L. G. Alexopoulos, G. M. Williams, M. L. Upton, L. A. Setton, and F.
Guilak, “Osteoarthritic Changes in the Biphasic Mechanical Properties
of the Chondrocyte Pericellular Matrix in Articular Cartilage,” J.
Biomech, vol. 38, no. 3, pp. 509–517, 2005.
[94] N. O. Chahine, C. T. Hung, and G. A. Ateshian, “In-Situ Measurements
of Chondrocyte Deformation under Transient Loading,” Eur. Cell Mater,
vol. 13, pp. 100–111, 2007.
[95] R. K. Korhonen, P. Julkunen, W. Wilson, and W. Herzog, “Importance
of Collagen Orientation and Depth-Dependent Fixed Charge Densities of
Cartilage on Mechanical behaviour of Chondrocytes,” ASME Journal
Biomech. Eng, vol. 130, no. 2, pp. 021003, 2008.
[96] E. Kim, F. Guilak, and M. A. Haider. “An Axisymmetric Boundary
Element Model for Determination of Articular Cartilage Pericellular
Matrix Properties in situ via Inverse Analysis of Chondron
Deformation,” ASME J. Biomech. Eng, vol. 132, no. 3, pp. 031011,
2010.
[97] S. K. Han, S. Federico, and W. Herzog, “A Depth-Dependent Model of
the Pericellular Microenvironment of Chondrocytes in Articular
Cartilage,” Comput Methods Biomech Biomed Eng, vol. 14, pp. 657–64,
2011.
[98] E. Moo, W. Herzog, S. Han, N. Abu Osman, B. Pingguan-Murphy, and
S. Federico, “Mechanical Behaviour of in-situ Chondrocytes Subjected
to Different Loading Rates: A finite Element Study,” Biomech Model
Mechanobiol, vol. 11, pp. 983–93, 2012.
[99] H. Guo, S. A. Maher, and P. A. Torzilli, “A Biphasic Multiscale Study
of the Mechanical Microenvironment of Chondrocytes within Articular
Cartilage under Unconfined Compression,” J Biomech, vol. 47, no. 11,
pp. 2721-2729, 2014.
[100]G. T. Charras, J. C. Yarrow, M. A. Horton, L. Mahadevan, T. J.
Mitchison, “Non-Equilibration of Hydrostatic Pressure in Blebbing
Cells,” Nature, vol. 435, pp. 365-369, 2005.
[101]M. Herant, W. A. Marganski, and M. Dembo, “The Mechanics of
Neutrophils: Synthetic Modeling of Three Experiments” Biophys
Journal, .vol. 84, pp. 3389-3413, 2003.
[102]E. Moeendarbary, L. Valon, M. Fritzsche, A. R. Harris, D. A. Moulding,
A. J. Thrasher, E. Stride, L. Mahadevan , and G. T. Charras, “The
Cytoplasm of Living Cells Behaves as a Poroelastic Material,” Nature
Materials, vol. 12, pp. 253–261, 2013.
[103]L. Cao, F. Guilak, and L. A. Setton, “Pericellular Matrix Mechanics in
the Anulus Fibrosus Predicted by a Three-Dimensional Finite Element
Model and in situ Morphology,” Cell. Mol. Bioeng, .vol. 2, no. 3, .pp
306–319, 2009.
[104]P. Julkunen, W. Wilson, J. S. Jurvelin, and R. K. Korhonen,
“Composition of the Pericellular Matrix Modulates the Deformation
Behaviour of Chondrocytes in Articular Cartilage under Static Loading,”
Med. Biol. Eng. Comput, vol. 47, no. 12, pp. 1281–1290, 2009.
[105]C. Y. Huang, M. A. Soltz, M. Kopacz, V. C. Mow, and G. A. Ateshian,
“Experimental Verification of the Roles of Intrinsic Matrix
Viscoelasticity and Tension-Compression Nonlinearity in the Biphasic
Response of Cartilage,” ASME J. Biomech. Eng, vol. 125, no. 1, pp. 84–
93, 2003.
[106]F. P. Baaijens, W. R. Trickey, T. A. Laursen, and F. Guilak, “Large
Deformation finite Element Analysis of Micropipette Aspiration to
Determine the Mechanical Properties of the Chondrocyte,” Ann Biomed
Eng, vol. 33, pp. 494–501, 2005.
[107]N. D. Leipzig, K. A. Athanasiou, “Unconfined creep compression of
chondrocytes,” Journal of Biomechanics, vol. 38, no. 1, pp. 77–85, 2005.
[108]W. R. Trickey, F.P. Baaijens, T. A. Laursen, L. G. Alexopoulos, and F.
Guilak, “Determination of the Poisson’s Ratio of the Cell: Recovery
Properties of Chondrocytes after Release from Complete Micropipette
Aspiration,” Journal of Biomechanics, vol. 39, no. 1, pp. 78–87, 2006.
[109]N. Wang, J. D. Tytell, and D. E. Ingber. “Mechanotransduction at a
Distance: Mechanically Coupling the Extracellular Matrix with the
Nucleus,” Nature Reviews Molecular Cell Biology, vol. 10, pp. 75–82,
2009.
[110]V. S. Deshpande, R. M. McMeeking, A. G. Evans, “A Model for the
Contractility of the Cytoskeleton Including the Effects of Stress-Fibre
Formation and Dissociation,” Proceedings of the Royal Society of
London A: Mathematical, Physical and Engineering Sciences, vol. 463,
no. 2079, pp. 787–815, 2007.
[111]V. S. Deshpande, M. Mrksich, R. M. McMeeking, and A. G. Evans, “A
Bio-Mechanical Model for Coupling Cell Contractility with Focal
Adhesion Formation,” Journal of the Mechanics and Physics of Solids,
vol. 56, pp. 1484–1510, 2008.
[112]E. L. Elson, G. M. Genin, “The Role of Mechanics in Actin Stress Fiber
Kinetics,” Experimental Cell Research, vol. 319, no. 16, pp. 2490-2500,
2013.
[113]D. Mitrossilis, J. Fouchard, A. Guiroy, N. Desprat, N. Rodriguez, B.
Fabry, A. Asnacios, “Single-Cell Response to Stiffness Exhibits Muscle-
Like Behaviour,” Proc. Natl. Acad. Sci. U.S.A., vol. 106, no. 43, pp.
18243–18248, 2009.
[114]J. P. McGarry, J. Fu, M. T. Yang, C. S. Chen, R. M. McMeeking, A. G.
Evans, and V. S. Deshpande, “Simulation of the Contractile Response of
Cells on an Array of Micro-Posts,” Philos. Trans. R. Soc. London, Ser.
A, vol. 367, no. 1902, pp. 3477–3497, 2009.
[115]A. Pathak, V. S. Deshpande, A. Evans, and R. McMeeking,
“Simulations of Cell Behaviour on Substrates of Variegated Stiffness
and Architecture,” in Computer Models in Biomechanics from Nano to
Macro, G. A. Holzapfel, E. Kuhl, Dordrecht: Springer Science +
Business Media Dordrecht, 2013, 25-41.
[116]W. Ronan, V. S. Deshpande, R. M. McMeeking, and J. P. McGarry,
“Cellular Contractility and Substrate Elasticity: A Numerical
Investigation of the Actin Cytoskeleton and Cell Adhesion,”
Biomechanics and Modeling in Mechanobiology, vol. 13, no. 2, 417-
435, 2014.
[117]A. Pathak, V. S. Deshpande, R. M. McMeeking, and A. G. Evans, “The
Simulation of Stress Fibre and Focal Adhesion Development in Cells on
Patterned Substrates,” J. R. Soc. Interface, vol. 5, no. 22, pp. 507–524,
2008.
[118]Z. Wei, V. S. Deshpande, R. M. McMeeking RM, Evans AG. “Analysis
and Interpretation of Stress Fiber Organization in Cells Subject to Cyclic
Stretch,” ASME J. Biomech. Eng. vol. 130, no. 3, pp. 031009, 2008.
[119]S. J. Han, N. J. Sniadecki, “Simulations of the Contractile Cycle in Cell
Migration Using a Bio-Chemical-Mechanical Model,” Comput Methods
Biomech Biomed Engin, vol. 14, no. 5, pp. 459-68, 2011.
[120]A. Pathak, R. M. McMeeking, A. G. Evans, and V. S. Deshpande, “An
Analysis of the Co-Operative Mechano-Sensitive Feedback between
Intracellular Signalling, Focal Adhesion Development, and Stress Fiber
Contractility,” J. Appl. Mech, vol. 78, no. 4, pp. 041001, 2011.
[121]E. P. Dowling, W. Ronan, and J. P. McGarry, “Computational
Investigation of in situ Chondrocyte Deformation and Actin
Cytoskeleton Remodelling under Physiological Loading,” Acta
Biomater, vol. 9, no. 4, pp. 5943–5955, 2013
[122]R. Blumenfeld, “Stresses in Granular Systems and Emergence of Force
Chains,” Phys. Rev. Lett, vol. 93, pp. 108301–108304, 2004.
[123]R. Blumenfeld, “Stress Transmission in Planar Disordered Solid
Foams,” J Phys A: Math Gen, vol. 36, pp. 2399-2411, 2003.
[124]R. C. Ball, R. Blumenfeld, “The Stress field in Granular Systems: Loop
Forces and Potential Formulation,” Phys. Rev. Lett. vol. 88 pp. 115505–
115508, 2002.
[125]D. Stamenović, N. Wang, “Stress Transmission within the Cell,”
Comprehensive Physiology, vol. 1, pp. 499–524, 2011.
[126]R. Satcher, Jr. C. Dewey, and J. Hartwig, “Mechanical Remodelling of
the Endothelial Surface and Actin Cytoskeleton Induced by Fluid Flow,”
Microcirculation, vol. 4, no. 4, pp. 8-453, 1998.
[127]D. Ingber, N. Wang, and D. Stamenovi, “Tensegrity, Cellular Biophysics, and the Mechanics of Living Systems,” Progress in Physics,
vol. 77, no. 4, pp. 046603, 2014.
[128]S. Hu, J. Chen, B. Fabry, Y. Numaguchi, A. Gouldstone, D. E. Ingber, J.
J. Fredberg, J. P. Butler, and N. Wang, “Intracellular Stress Tomography
Reveals Stress Focusing and Structural Anisotropy in Cytoskeleton of
Living Cells,” Am J Physiol. Cell Physiol., vol. 285, pp. C1082-1090,
2003.
[129]D. Kardas, U. Nackenhrost, and D. Balzani, “Computational Model for
the Cell-Mechanical Response of the Osteocyte Cytoskeleton Based on
Self-Stabilizing Tensegrity Structures,” Biomech. Model Mechanobiol.,
vol. 12, pp. 167-183, 2013.
[130]E. Robert, “Cellular and Molecular Structure as a Unifying Framework
for Whole-Cell Modeling,” Curr. Opin. Struct. Biol, vol. 25, pp. 86-91,
2014.