Biodegradable Surfactants for Advanced Drug Delivery Strategies

Oxidative stress makes up common incidents in
eukaryotic metabolism. The presence of diverse components
disturbing the equilibrium during oxygen metabolism increases
oxidative damage unspecifically in living cells. Body´s own
ubiquinone (Q10) seems to be a promising drug in defending the
heightened appearance of reactive oxygen species (ROS). Though, its
lipophilic properties require a new strategy in drug formulation to
overcome their low bioavailability. Consequently, the manufacture of
heterogeneous nanodispersions is in focus for medical applications.
The composition of conventional nanodispersions is made up of a
drug-consisting core and a surfactive agent, also named as surfactant.
Long-termed encapsulation of the surfactive components into tissues
might be the consequence of the use during medical therapeutics. The
potential of provoking side-effects is given by their nonbiodegradable
properties. Further improvements during fabrication
process use the incorporation of biodegradable components such as
modified γ-polyglutamic acid which decreases the potential of
prospective side-effects.





References:
<p>[1] F. Hellmers, P. Ferguson, J. Koropatnick, R. Krull, and A. Margaritis,
&ldquo;Characterization and in vitro cytotoxicity of doxorubicin-loaded &gamma;-
polyglutamic acid-chitosan composite nanoparticles,&rdquo; Biochem. Eng. J.,
vol.75, pp.72&ndash;78, Jun. 2013.
[2] A. Sandler, R. Gray, M. C. Perry, J. Brahmer, J. H. Schiller, A. Dowlati,
R. Lilenbaum, and D. H. Johnson, &ldquo;Paclitaxel-carboplatin alone or with
bevacizumab for non-small-cell lung cancer,&rdquo; N. Engl. J. Med., vol.355,
no. 24, pp.2542&ndash;2550, Dec. 2006.
[3] B. Manocha and A. Margaritis, &ldquo;Controlled Release of Doxorubicin
from Doxorubicin/&gamma;-Polyglutamic Acid Ionic Complex,&rdquo; J. Nanomat.,
vol.2010, p.9, 2010.
[4] D. J. Slamon, &ldquo;Use of chemotherapy plus a monoclonal antibody against
HER2 for metastatic breast cancer that overexpresses HER2,&rdquo; N. Engl.
J. Med., vol.344, no. 11, pp.783&ndash;792, 2001.
[5] R. S. Herbst, G. Giaccone, J. H. Schiller, R. B. Natale, V. Miller, C.
Manegold, G. Scagliotti, R. Rosell, I. Oliff, J. a Reeves, M. K. Wolf, A.
D. Krebs, S. D. Averbuch, J. S. Ochs, J. Grous, A. Fandi, and D. H.
Johnson, &ldquo;Gefitinib in combination with paclitaxel and carboplatin in
advanced non-small-cell lung cancer: a phase III trial-Intact 2,&rdquo; J. Clin.
Oncol., vol.22, no. 5, pp.785&ndash;794, Mar. 2004.
[6] L. Papucci, N. Schiavone, E. Witort, M. Donnini, A. Lapucci, A.
Tempestini, L. Formigli, S. Zecchi-Orlandini, G. Orlandini, G. Carella,
R. Brancato, and S. Capaccioli, &ldquo;Coenzyme q10 prevents apoptosis by
inhibiting mitochondrial depolarization independently of its free radical
scavenging property,&rdquo; J. Biol. Chem., vol.278, no. 30, pp.28220&ndash;28228,
Jul. 2003.
[7] K. Apel and H. Hirt, &ldquo;Reactive oxygen species: metabolism, oxidative
stress, and signal transduction,&rdquo; Annu. Rev. Plant Biol., vol.55, pp.373&ndash;
399, Jan. 2004.
[8] R. K. Chaturvedi and M. F. Beal, &ldquo;Mitochondrial approaches for
neuroprotection,&rdquo; Ann. N. Y. Acad. Sci., vol.1147, pp.395&ndash;412, Dec.
2008.
[9] F. L. Crane, &ldquo;Biochemical functions of coenzyme Q10,&rdquo; J. Am. Coll.
Nutr., vol.20, no. 6, pp.591&ndash;598, 2001.
[10] J. Pardeike, S. Weber, N. Matsko, and A. Zimmer, &ldquo;Formation of a
physical stable delivery system by simply autoclaving nanostructured
lipid carriers (NLC),&rdquo; Int. J. Pharm., vol.439, no. 1&ndash;2, pp.22&ndash;27, Dec.
2012.
[11] H. Bunjes, &ldquo;Lipid nanoparticles for the delivery of poorly water-soluble
drugs,&rdquo; J. Pharm. Pharmacol., vol.62, no. 11, pp.1637&ndash;1645, Nov.
2010.
[12] A. J. Almeida and E. Souto, &ldquo;Solid lipid nanoparticles as a drug delivery
system for peptides and proteins,&rdquo; Adv. Drug Deliv. Rev., vol.59, no. 6,
pp.478&ndash;490, Jul. 2007.
[13] W. Mehnert and K. M&auml;der, &ldquo;Solid lipid nanoparticles,&rdquo; Adv. Drug Deliv.
Rev., vol.64, pp.83&ndash;101, Dec. 2012.
[14] W. Mehnert and K. M&auml;der, &ldquo;Solid lipid nanoparticles: production,
characterization and applications.,&rdquo; Adv. Drug Deliv. Rev., vol.47, no. 2&ndash;
3, pp.165&ndash;196, Apr. 2001.
[15] K. Shakesheff, C. Evora, I. Soriano, and R. Langer, &ldquo;The Adsorption of
Poly(vinyl alcohol) to Biodegradable Microparticles Studied by X-Ray
Photoelectron Spectroscopy (XPS),&rdquo; J. Colloid Interface Sci., vol.185,
no. 2, pp.538&ndash;547, Jan. 1997.
[16] J. Kreuter, &ldquo;Nanoparticulate systems for brain delivery of drugs,&rdquo; Adv.
Drug Deliv. Rev., vol.47, no. 1, pp.65&ndash;81, Mar. 2001.
[17] I. F. Uchegbu and S. P. Vyas, &ldquo;Non-ionic surfactant based vesicles
(niosomes) in drug delivery,&rdquo; Int. J. Pharm., vol.172, no. 1&ndash;2, pp.33&ndash;70,
Oct. 1998.
[18] V. P. Torchilin, &ldquo;Structure and design of polymeric surfactant-based
drug delivery systems,&rdquo; J. Control. Release, vol.73, no. 2&ndash;3, pp.137&ndash;
172, Jun. 2001.
[19] R. G. Strickley, &ldquo;Solubilizing excipients in oral and injectable
formulations,&rdquo; Pharm. Res., vol.21, no. 2, pp.201&ndash;230, Feb. 2004.
[20] R. Gref, A. Dombb, P. Quelled, T. Blunk, R. H. Miillerd, J. M.
Verbavatz, and R. Langerf, &ldquo;The controlled intravenous delivery of
drugs using PEG-coated sterically stabilized nanospheres,&rdquo; Adv. Drug
Deliv. Rev., vol.16, pp.215&ndash;233, 1995.
[21] H. Lv, S. Zhang, B. Wang, S. Cui, and J. Yan, &ldquo;Toxicity of cationic
lipids and cationic polymers in gene delivery,&rdquo; J. Control. Release,
vol.114, no. 1, pp.100&ndash;109, Aug. 2006.
[22] M. Huang, E. Khor, and L.-Y. Lim, &ldquo;Uptake and cytotoxicity of chitosan
molecules and nanoparticles: effects of molecular weight and degree of
deacetylation,&rdquo; Pharm. Res., vol.21, no. 2, pp.344&ndash;353, Feb. 2004.
[23] Alakhov VYu, Moskaleva EYu, E. V Batrakova, and a V Kabanov,
&ldquo;Hypersensitization of multidrug resistant human ovarian carcinoma
cells by pluronic P85 block copolymer,&rdquo; Bioconjugate Chem., vol.7, no.
2, pp.209&ndash;216, 1996.
[24] B. Manocha and A. Margaritis, &ldquo;A novel Method for the selective
recovery and purification of &gamma;-polyglutamic acid from Bacillus
licheniformis fermentation broth,&rdquo; Biotechnol. Prog., vol.26, no. 3,
pp.734&ndash;742, 2010.
[25] A. Richard and A. Margaritis, &ldquo;Rheology, oxygen transfer, and
molecular weight characteristics of poly(glutamic acid) fermentation by
Bacillus subtilis,&rdquo; Biotechnol. Bioeng., vol.82, no. 3, pp.299&ndash;305, May
2003.
[26] J. M. Buescher and A. Margaritis, &ldquo;Microbial biosynthesis of
polyglutamic acid biopolymer and applications in the biopharmaceutical,
biomedical and food industries,&rdquo; Crit. Rev. Biotech., vol.27, no. 1, pp.1&ndash;
19, 2007.
[27] I. Bajaj and R. Singhal, &ldquo;Poly (glutamic acid) - An emerging biopolymer
of commercial interest,&rdquo; Bioresource Technol., vol.102, no. 10,
pp.5551&ndash;5561, May 2011.
[28] A. Richard and A. Margaritis, &ldquo;Poly(glutamic acid) for biomedical
applications,&rdquo; Crit. Rev. Biotech., vol.21, no. 4, pp.219&ndash;232, Jan. 2001.
[29] D. Hudson and A. Margaritis, &ldquo;Biopolymer nanoparticle production for
controlled release of biopharmaceuticals,&rdquo; Crit. Rev. Biotech., pp.1&ndash;19,
Jan. 2012.
[30] M. Kambourova, M. Tangney, and G. Fergus, &ldquo;Regulation of
Polyglutamic Acid Synthesis by Glutamate in Bacillus licheniformis and
Bacillus subtilis Regulation of Polyglutamic Acid Synthesis by
Glutamate in Bacillus licheniformis and Bacillus subtilis,&rdquo; Appl.
Environ. Microbiol., vol.67, pp.1004&ndash;1007, 2001.
[31] G. A. Kunioka M, &ldquo;Biosynthesis of poly(&gamma;-glutamic acid) from Lglutamic
acid, citric acid, and ammonium sulfate in Bacillus subtilis
IFO3335,&rdquo; Appl. Microbiol. Biotechnol., vol.6, pp.867&ndash;872, 1994.
[32] T. Akagi, M. Higashi, T. Kaneko, T. Kida, and M. Akashi, &ldquo;Hydrolytic
and Enzymatic Degradation of Nanoparticles Based on Amphiphilic
Poly(gamma-glutamic acid)-graft-L-Phenylalanine Copolymers,&rdquo;
Biomacromolecules, vol.7, no. 1, pp.297&ndash;303, Jan. 2006.
[33] T. Akagi, T. Kaneko, T. Kida, and M. Akashi, &ldquo;Preparation and
characterization of biodegradable nanoparticles based on poly(gammaglutamic
acid) with l-phenylalanine as a protein carrier,&rdquo; J. Control.
Release, vol.108, no. 2&ndash;3, pp.226&ndash;236, Nov. 2005.
[34] F. Branda, B. Silvestri, G. Luciani, A. Costantini, and F. Tescione,
&ldquo;Synthesis structure and stability of amino functionalized PEGylated
silica nanoparticles,&rdquo; Coll. Surf. A, vol.367, no. 1&ndash;3, pp.12&ndash;16, Sep.
2010.
[35] L. H. Reddy and R. S. R. Murthy, &ldquo;Etoposide-loaded nanoparticles made
from glyceride lipids: formulation, characterization, in vitro drug
release, and stability evaluation.,&rdquo; AAPS PharmSciTech, vol.6, no. 2,
pp.E158&ndash;E166, Jan. 2005.
[36] B. Zhao and Z. Nan, &ldquo;Preparation of stable magnetic nanofluids
containing Fe3O4@PPy nanoparticles by a novel one-pot route,&rdquo;
Nanoscale Res. Lett., vol.6, no. 1, pp.230&ndash;238, Jan. 2011.
[37] S. Hohmann, Yeast stress responses. 2003, p.387.
[38] N. A. Elliott and M. R. Volkert, &ldquo;Stress Induction and Mitochondrial
Localization of Oxr1 Proteins in Yeast and Humans,&rdquo; Mol. Cell. Biol.,
vol.24, no. 8, pp.3180&ndash;3187, 2004.
[39] W. Dr&ouml;ge, &ldquo;Free radicals in the physiological control of cell function,&rdquo;
Physiol. Rev., vol.82, no. 1, pp.47&ndash;95, Jan. 2002.
[40] A. H&ouml;hn, J. K&ouml;nig, and T. Grune, &ldquo;Protein oxidation in aging and the
removal of oxidized proteins,&rdquo; J. Proteomics, Jan. 2013.
[41] D. J. Jamieson, &ldquo;Oxidative stress responses of the yeast Saccharomyces
cerevisiae,&rdquo; Yeast, vol.14, no. 16, pp.1511&ndash;1527, Dec. 1998.
[42] L. L. Ji, &ldquo;Antioxidants and oxidative stress in exercise,&rdquo; Proc. Soc. Exp.
Biol. Med., vol.222, no. 44453, pp.283&ndash;292, 1999.
[43] V. Mugoni, R. Postel, V. Catanzaro, E. De Luca, E. Turco, G. Digilio, L.
Silengo, M. P. Murphy, C. Medana, D. Y. R. Stainier, J. Bakkers, and
M. M. Santoro, &ldquo;Ubiad1 is an antioxidant enzyme that regulates eNOS
activity by CoQ10 synthesis,&rdquo; Cell, vol.152, no. 3, pp.504&ndash;518, Jan.
2013.
[44] A. Navarro and A. Boveris, &ldquo;The mitochondrial energy transduction
system and the aging process,&rdquo; Am. J. Physiol. Cell Physiol., vol.292,
no. 2, pp.C670&ndash;C686, Feb. 2007.
[45] J. Gruber, S. Fong, C.-B. Chen, S. Yoong, G. Pastorin, S. Schaffer, I.
Cheah, and B. Halliwell, &ldquo;Mitochondria-targeted antioxidants and
metabolic modulators as pharmacological interventions to slow ageing.,&rdquo;
Biotechnol. Adv., Sep. 2012.</p>