Atomic Clusters: A Unique Building Motif for Future Smart Nanomaterials

The fundamental issue in understanding the origin and
growth mechanism of nanomaterials, from a fundamental unit is a big
challenging problem to the scientists. Recently, an immense attention
is generated to the researchers for prediction of exceptionally stable
atomic cluster units as the building units for future smart materials.
The present study is a systematic investigation on the stability and
electronic properties of a series of bimetallic (semiconductor-alkaline
earth) clusters, viz., BxMg3 (x=1-5) is performed, in search for
exceptional and/ or unusual stable motifs. A very popular hybrid
exchange-correlation functional, B3LYP along with a higher basis
set, viz., 6-31+G[d,p] is employed for this purpose under the density
functional formalism. The magic stability among the concerned
clusters is explained using the jellium model. It is evident from the
present study that the magic stability of B4Mg3
cluster arises due to
the jellium shell closure.


Authors:



References:
[1] A. Krüger, Carbon Materials and Nanotechnology, NY, USA: Wiley-
VCH, 2010.
[2] Handbook of nanotechnology (3rd Ed.), Ed. B. Bhushan (Springer-
Verlag, NY, 2010).
[3] Nanoclusters: A Bridge Across Disciplines, Eds. P. Jena, and A.W.
Castleman, Jr. (Elsevier, Amsterdam, 2010).
[4] R. Tenne, L. Margulis, M. Genut, G. Hodes, Nature (London) 360
(1992) 444.
[5] P. K. Chattaraj, and D. R. Roy, J. Phys. Chem. A 111 (2007) 4684.
[6] D. R. Roy, J. Mol. Struct. 1007 (2012) 203.
[7] H. W. Kroto, J. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley,
Nature (London) 318 (1985) 162.
[8] S. M. Gorun, Oxo Iron(III) aggregates, In: Metal clusters in proteins,
Ed. L. Que, Jr. (ACS symposium series, Washington, DC), vol. 372, p.
196, 1988.
[9] J. Bernholc, C. Roland, and B. I. Yakobson, Curr. Op. Sol. St. Mat. Sci.
2 (1997) 706.
[10] P. Martyniuk, and A. Rogalski, Prog. Quantum Electr. 32 (2008) 89.
[11] L. Rapoport, Y. Bilik, Y. Feldman, M. Homyonfer, S. R. Cohen, and R.
Tenne, Nature (London) 387 (1997) 791. [12] S. M. Lee, Y. H. Lee, Y. G. Hwang, J. Elsner, D. Porezag, and T.
Frauenheim, Phys. Rev. B 60 (1999) 7788.
[13] R. I. G. Hughes, Science 14 (2006) 457.
[14] P. Hohenberg, and W. Kohn, Phys. Rev. B 136 (1964) B864.
[15] W. Kohn, and L. J. Sham, Phys. Rev. A 140 (1965) A1133.
[16] R. G. Parr, and W. Yang, Density Functional Theory of Atoms and
Molecules, New York, USA: Oxford University Press, 1989.
[17] W. D. Knight, K. Clemenger, W. A. deHeer, W. A. Saunders, M. Y.
Chou, and M. L. Cohen, Phys. Rev. Lett. 52 (1984) 2141.
[18] S. A. Claridge, A. W. Castleman Jr., S. N. Khanna, C. B. Murray, A.
Sen, and P. S. Weiss, ACS Nano 3 (2009) 244.
[19] A. W. Castleman, Jr., and S. N. Khanna, J. Phys. Chem. C 113 (2009)
2664.
[20] D. R. Roy, J. Nano Res. 24 (2013) 77.
[21] Quantum Phenomena in Clusters and Nanostructures, Eds. S. N.
Khanna, and A. W. Castleman, Jr., New York, USA: Springer, 2003.
[22] R. G. Pearson, Hard and Soft Acids and Bases, Stroudsberg, PA, USA:
Dowden, Hutchinson and Ross, 1973.
[23] M. J. Frisch et. al., GAUSSIAN 09, Revision D.01; Gaussian, Inc.:
Pittsburgh PA, 2009.
[24] A. D. Becke, J. Chem. Phys. 98 (1993) 5648.
[25] V. A. Rassolov, M. A. Ratner, J. A. Pople, P. C. Redfern, and L. A.
Curtiss, J. Comp. Chem. 22 (2001) 976.
[26] CHEMCRAFT, G. A. Zhurko, and D. A. Zhurko
(http://www.chemcraftprog.com).
[27] I. Boustani, Phys. Rev. B 55 (1997) 16426.
[28] A. F. Jalbout, J. Mol. Struct. (Theochem) 589–590 (2002) 75.
[29] A. Lyalin, I. A. Solov’yov, A. V. Solov’yov, and W. Greiner, Phys. Rev.
A 67 (2003) 063203.
[30] K. P. Huber, and G. Herzberg, Molecular Spectra and Molecular
Structure. IV. Constants of Diatomic Molecules, New York, USA: Van
Nostrand Reinhold, 1979.