Application of the Experimental Planning Design to the Notched Precracked Tensile Fracture of Composite

Composite materials have important assets compared
to traditional materials. They bring many functional advantages:
lightness, mechanical resistance and chemical, etc. In the present
study we examine the effect of a circular central notch and a precrack
on the tensile fracture of two woven composite materials. The tensile
tests were applied to a standardized specimen, notched and a
precarcked (orientation of the crack 0°, 45° and 90°). These tensile
tests were elaborated according to an experimental planning design of
the type 23.31 requiring 24 experiments with three repetitions. By the
analysis of regression, we obtained a mathematical model describing
the maximum load according to the influential parameters (hole
diameter, precrack length, angle of a precrack orientation). The
specimens precracked at 90° have a better behavior than those having
a precrack at 45° and still better than those having of the precracks
oriented at 0°. In addition the maximum load is inversely
proportional to the notch size.


Authors:



References:
[1] Ouinas D, Serier B and Bouiadjra B. Intéraction d'une fissure émanant
d'entaille semi-circulaire orientée perpendiculairement à l'interface
céramique/métal. J. Revue des composites et des matériaux avancés
2005; 5: 221-244.
[2] Naik NK, Shembeker PS. Notched strength of fabric laminates I:
prediction. J.Comp Sci & Technol 1992; 44:1-12.
[3] Xiao J, Bathias C. Modified tan’s model for the strength prediction of
woven laminates with circular holes. J.Comp Eng 1993; 3: 961-973.
[4] Kim JK, Kim DS, Takeda N. Notched strength and fracture criterion in
fabric composites containing a circular hole. J. Comp Mater 1995; 29:
982-998.
[5] Ashbee K.H.G and Wyatt R.C. Water damage in glass fiber-resin
composites. Proc.R.Soc .London; 1969, A312, p. 553-564.
[6] ASTM 2004. Standard Test Method for Tensile Properties of Polymer
Matrix Composite Materials. D3039/D3039M; edition 2004.
[7] Scheffler E. Einfürung in die Praxis der statistischen Versuchsplannung.
VEB deutscher Verlag für Grund stoffindustrie. Leipzig; 1986.
[8] Nalimov V. P., Tschernova N. A. Statistischieski Methodi Planirovania
Extremalnick Experimentov. Naouka Moscou; 1965.
[9] Vivier S. Stratégie d’optimisation par la méthode des plans
d’expériences et application aux dispositifs électroniques modélisés par
éléments finis. Thèse de Doctorat. Ecole centrale de Lille; 2002.
[10] Hebbar A. Méthodes statistiques de planification extrémale des
expériences, Polycopié. Université de Mostaganem; 2006.
[11] Srinivas M., Kamat S.V. and Rama Rao P. Influence of mixed mode I/III
loading on the fracture toughness of mild steel at various strain rates. J.
Materials Science and Technology 2004; 20: 235-242.
[12] Luhowiak W. et Collot C. Influence du diamètre des bulles sur la
microfissuration d'un joint collé. J. Materials and Structures 2006; 19:
127-32.
[13] Chan K.S and Cruse T.A. Stress intensity factors for anisotropic
compact-tension specimens with inclined cracks. J. Engineering Fracture
Mechanics 1986; 23: 863-874
[14] Tallaron C, Rousy D. Thermomechanical behaviour under static and
cyclic loading, of multidirectionnal laminated C/C composites materials,
with or without notches. Institut national des sciences appliquées de
Lyon. Travaux Universitaires, Villeurbanne, France; 1996.
[15] Weiju R and Theodore N. Notch size effects on high cycle fatigue limit
stress of Udimet 720. J. Materials Science and Engineering A 2003;
357: 41-152.
[16] Lukás P. Kunz L, Weiss B. Stickler R. Notch Size Effect In Fatigue. J.
Fatigue & Fracture of Engineering Materials & Structures 2007; 12:
3175 -186.
[17] Akourri O, Louah M, Kifani A. Gilgert G. and Pluvinage G. The effect
of notch radius on fracture toughness JIc. J. Engineering Fracture
Mechanics 2000; 65: 491-505.
[18] Zhou B. Kokin K. Effect of surface pre-crack morphology on the
fracture of thermal barrier coatings under thermal shock. J. Acta
Materialia 2004; 52: 4189-4197.
[19] Naghipour P, Bartsch M, Chernova L, Hausmann J and Voggenreiter H.
Effect of fiber angle orientation and stacking sequence on mixed mode
fracture toughness of carbon fiber reinforced plastics: Numerical and
experimental investigations. J. Materials Science and Engineering:A
2010; 527: 3509-517.
[20] Wood M.D.K, Sun X, Tong L, Katzos A. Rispler, A.R. The Effect of
Stitch distribution on Mode I delamination toughness of stitched
laminated composites– experimental results and fea simulation. J.
Composites Science and Technology 2007; 67: 1058-1072.
[21] Luhowiak W et Collot C. Influence du diamètre des bulles sur la
microfissuration d'un joint collé. J. Materials and Structures 2006; 19:
27-32.
[22] Xu S, Shen G and Tyson W.R. Effect of crack-tip plasticity on crack
length estimation methods for SENB sample. Engineering Fracture
Mechanics; 2005, p.1454-1459.
[23] Wen-Shyong K, Tse-Hao K and Cheng-Po C. Effect of weaving
processes on compressive behavior of 3D woven composites. J.
Composites Part A: Applied Science and Manufacturing 2007; 38: 555-
565.
[24] Documentations A.N.G.I S.R.L, Commercial offices and warehouse
14018 Villafranca d'Asti, Italie, [email protected]
[25] Swanson R. E, Thompson A. W. and Bernstein I. M. Effect of notch root
radius on stress intensity in mode I and mode III loading. J.
Metallurgical and Materials Transactions A 2007; 17: 1633-1637.
[26] Mohamed K. Kaleemulla A and Siddeswarappa B. Effect of notch size
and fibre content on the tensile strength of fabric reinforced hybrid
composites. J. International Journal of Materials and Product
Technology 2008; 31: 283 – 292.