Analysis of Heart Beat Dynamics through Singularity Spectrum

The analysis to detect arrhythmias and life-threatening conditions are highly essential in today world and this analysis can be accomplished by advanced non-linear processing methods for accurate analysis of the complex signals of heartbeat dynamics. In this perspective, recent developments in the field of multiscale information content have lead to the Microcanonical Multiscale Formalism (MMF). We show that such framework provides several signal analysis techniques that are especially adapted to the study of heartbeat dynamics. In this paper, we just show first hand results of whether the considered heartbeat dynamics signals have the multiscale properties by computing local preticability exponents (LPEs) and the Unpredictable Points Manifold (UPM), and thereby computing the singularity spectrum.




References:
[1] M. Malik and A. Camm, and Members of the Task Force, Heart rate
variability: standards of measurement, physiological interpretation, and
clinical use, Circulation, vol. 93, pp. 10431065, 1996.
[2] P. Ivanov, L. Amaral, A. Goldberger, S. Havlin, M. Rosenblum, Z. Struzik,
H. Stanley, Multifractality in human heartbeat dynamics, Nature 399, pp.
461465, 1999.
[3] P. Ivanov, Long-range dependence in heartbeat dynamics, In G. Rangarajan,
M. Ding (eds.) Processes with Long-Range Correlations, Lecture
Notes in Physics, Springer Berlin / Heidelberg, vol. 621, pp. 339372,
2003.
[4] S. Kozaitis, Improved feature detection in ecg signals through denoising,
International Journal of Signal and Imaging Systems Engineering, 1(2),
pp. 108114, 2008.
[5] R. Klabunde, Cardiovascular Physiology Concepts, Lippincott Williams
Wilkins, Hagerstwon, 2005.
[6] C. Peng, J. Mietus, J. Hausdorff, S. Havlin, H. Stanley, and A. Goldberger,
Long-Range Anticorrelations and Non-Gaussian Behavior of the
Heartbeat, Phys. Rev. Lett., 70, pp. 1343-1346, 1993.
[7] S. Thurner, M. Feurstein, and M. Teich, Multiresolution Wavelet Analysis
of Heartbeat Intervals Discriminates Healthy Patients from Those with
Cardiac Pathology, Phys. Rev. Lett., 80, pp. 1544-1547, 1998.
[8] L. Amaral, P. Ivanov, N. Aoyagi, I. Hidaka, S. Tomono, A. Goldberger,
H. Stanley, and Y. Yamamoto, Behavioral-Independent Features of Complex
Heartbeat Dynamics, Phys. Rev. Lett., 86, pp. 6026-6029, 2001.
[9] Y. Ashkenazy, P. Ivanov, S. Havlin, C. Peng, A. Goldberger, and H. Stanley,
Magnitude and Sign Correlations in Heartbeat Fluctuations, Phys.
Rev. Lett., 86, pp. 1900-1903, 2001.
[10] P. Bernaola-Galvan, P. Ivanov, L. Amaral, and H. Stanley, Scale Invariance
in the Nonstationarity of Human Heart Rate, Phys. Rev. Lett., 87,
168105, 2001.
[11] P. Ivanov, L. Amaral, A. Goldberger, S. Havlin, M. Rosenblum, H. Stanley,
and Z. Struzik, From 1/f Noise to Multifractal Cascades in Heartbeat
Dyamics, Chaos 11, pp. 641-652, 2001.
[12] V. Ribeiro, R. Riedi, M. Crouse, R. Baraniuk, Multiscale queuing
analysis of long-range-dependent network traffic, In: INFOCOM (2), pp.
10261035, 2000.
[13] O. Pont, A. Turiel, C. Perez-Vicente, Application of the microcanonical
multifractal formalism to monofractal systems, Physical Review E 74,
061110061123, 2006.
[14] A. Turiel, H. Yahia, C. Perez-Vicente, Microcanonical multifractal formalism:
a geometrical approach to multifractal systems. Part I: Singularity
analysis, Journal of Physics A, 41, 015501, 2008.
[15] S. Mallat, W. Huang, Singularity detection and processing with wavelets,
IEEE Trans. in Inf. Th. 38, pp. 617643, 1992.
[16] S. Mallat, S. Zhong, Wavelet transform maxima and multiscale edges,
In: et al, M.B.R. (ed.) Wavelets and their applications, Jones and Bartlett,
Boston, 1991.
[17] O. Pont, A. Turiel, C. Perez-Vicente, On optimal wavelet bases for the
realization of microcanonical cascade processes, Int. J. Wavelets Multi.,
IJWMIP, 9(1), pp. 3561 , 2011.
[18] A. Turiel, C. Perez-Vicente, J. Grazzini, Numerical methods for the estimation
of multifractal singularity spectra on sampled data: a comparative
study, Journal of Computational Physics, 216(1), pp. 362390, 2006.
[19] S. Jaffard, Multifractal formalism for functions. I. Results valid for all
functions, SIAM Journal of Mathematical Analysis 28(4), 944-970, 1997.
[20] I. Simonsen, A. Hansen, O. Magnar, Determination of the hurst exponent
by use of wavelet transforms, Phys. Rev. E, 58(3), pp. 2779-2787, 1998.
[21] C. Jones, G. Lonergan, D. Mainwaring, Wavelet packet computation of
the hurst exponent, J. Phys. A: Math. Gen, 29(10), 2509, 1996.
[22] A. Turiel, N. Parga, The multi-fractal structure of contrast changes in
natural images: from sharp edges to textures, Neural Computation 12,
763-793, 2000.
[23] S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, 2nd
Edition, 1999.
[24] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications,
John Wiley and sons, Chichester, 1990.
[25] A. Arneodo, F. Argoul, E. Bacry, J. Elezgaray, J. Muzy, Ondelettes
multifractales et turbulence, Diderot Editeur, Paris, France, 1995.
[26] G. Parisi, U. Frisch, On the singularity structure of fully developed
turbulence, in: M. Ghil, R. Benzi, G. Parisi (Eds.), Turbulence and
Predictability in Geophysical Fluid Dynamics. Proc. Intl. School of
Physics E. Fermi, North Holland, Amsterdam, pp. 84-87, 1985.
[27] O. Pont, A. Turiel, H. Yahia, An Optimized Algorithm for the Evaluation
of Local Singularity Exponents in Digital Signals, IWCIA, 6636, pp, 346-
357, 2011.