A New Physical Modeling for Multiquantum Well Structure APD Considering Nonuniformity of Electric Field in Active Regin

In the present work we model a Multiquantum Well structure Separate Absorption and Charge Multiplication Avalanche Photodiode (MQW-SACM-APD), while the Absorption region coincide with the MQW. We consider the nonuniformity of electric field using split-step method in active region. This model is based on the carrier rate equations in the different regions of the device. Using the model we obtain the photocurrent, and dark current. As an example, InGaAs/InP SACM-APD and MQW-SACM-APD are simulated. There is a good agreement between the simulation and experimental results.




References:
[1] J. C. Campbell, "Recent advances in telecommunications avalanche
photodiodes," Lightwave. Tech. J., vol. 25, no. 1, Jan. 2007.
[2] S. D. Personick, "Receiver design for digital fiber-optic communication
systems," Bell Syst. Tech. J., vol. 52, pp. 843-866, 1973.
[3] B. L. Kasper and J. C. Campbell, "Multigigbit-per-second avalanche
photodiode lightwave receivers," Lightwave. Tech. J., vol. LT-5, pp.
1351-1364, 1987.
[4] Y. Kang, P. Mages and A. R. Glawson, ÔÇÿÔÇÿFused InGaAs-Si avalanche
photodiodes with low-noise performances," IEEE Photonic Tech Lett,
vol. 14, no. 4, pp. 1593-1595, 2002.
[5] F. Ma, S. Wang, and X. Li; "Monte Carlo simulation of low noise
avalanche photodiodes with heterojunction," Appl. Phys. Lett., vol. 92,
no. 2, pp. 4791-4795, 2002.
[6] Y. Zhao, S. He, "Multiplication characteristics of InP/InGaAs avalanche
photodiodes with a thicker charge layer," Optical Communications 265,
pp. 476-480, 2006.
[7] A. Zarifkar and M. Soroosh, "Circuit modeling of separate absorption,
charge and multiplication avalanche photodiode (SACM-APD)," 6th
International Conference on Laser and Fiber-Optical Network Modeling
(LFNM), pp. 213-219, Ukrain, 2004.
[8] W. Chen, Sh. Liu, "PIN avalanche photodiodes model for circuit
simulation," IEEE J Quantum Electron., vol. 32, no. 5, pp. 2105-2111,
1996.
[9] M. Wintrebert-Fouquet and B. Orsal, "Temperature investigation of dark
current and its electrical noise in GaAs/AlGaAs multiquantum well
photodiodes," J. Appl. Phys., vol. 85, no. 2, Jan. 1999.
[10] T. H. Wood, "Multiple quantum well (MQW) waveguide modulators,"
Lightwave. Tech. J., vol. 6, no. 6, June. 1988.
[11] A. K. Ghatak, K. Thyagarajan and M. R. Shenoy, "A novel numerical
technique for solving the one dimensional schroedinger equation using
matrix approach-application to quantum well structures," IEEE J.
Quantum Electronics., vol. 24, no. 8, Aug. 1988.
[12] G. Lengyel, K. W. Jelley and R. W. Engelmann, "A semi-empirical
model for electroabsorption in GaAs/AlGaAs multiple quantum well
modulator structures," IEEE J. Quantum Electronics., vol. 26, no. 2,
Feb. 1990.
[13] P. Bhattacharya, Semiconductor Optoelectronic Devices, Prentice-Hall,
1997, pp. 135-138.
[14] S. R. Forrest, "Performance of InxGa1-xAsyP1-y photodiodes with dark
current limited by diffusion, generation recombination, and tunneling,"
IEEE J. Quantum Electron, vol. QE-17, pp. 217-226, 1981.
[15] D. Hasko, "InGaAs/InP avalanche photodiode with seperated
absorption, charge and multiplication layers," International Student and
Young Scientists Workshop "Photonics and Microsystems", 2004.
[16] S. Adachi, Physical Properties of III-V Semiconductor Compounds, New
York: Jhon. Wiley, 1992, PP. 246-247.