Effectiveness of the Flavonoids Isolated from Thymus inodorus by Different Solvents against Some Pathogenis Microorganisms

The aim of this study was to investigate the antimicrobial activity of flavonoids isolated from the aerial part of a medicinal plant which is Thymus inodorusby the middle agar diffusion method on following microorganisms. We have Staphylococcus aureus, Escherichia coli, Pseudomonas fluorescens, AspergillusNiger, Aspergillus fumigatus and Candida albicans. During this study, flavonoids extracted by stripping with steam are performed. The yields of flavonoids is 7.242% for the aqueous extract and 28.86% for butanol extract, 29.875% for the extract of ethyl acetate and 22.9% for the extract of di - ethyl. The evaluation of the antibacterial effect shows that the diameter of the zone of inhibition varies from one microorganism to another. The operation values obtained show that the bacterial strain P fluoresces, and 3 yeasts and molds; A. Niger, A. fumigatus and C. albicansare the most resistant. But it is noted that, S. aureus is shown more sensitive to crude extracts, the stock solution and the various dilutions. Finally for the minimum inhibitory concentration is estimated only with the crude extract of Thymus inodorus flavonoid.Indeed, these extracts inhibit the growth of Gram + bacteria at a concentration varying between 0.5% and 1%. While for bacteria to Gram -, it is limited to a concentration of 0.5%.

Homogenization of Cocoa Beans Fermentation to Upgrade Quality Using an Original Improved Fermenter

Cocoa beans (Theobroma cocoa L.) are the main components for chocolate manufacturing. The beans must be correctly fermented at first. Traditional process to perform the first fermentation (lactic fermentation) often consists in confining cacao beans using banana leaves or a fermentation basket, both of them leading to a poor product thermal insulation and to an inability to mix the product. Box fermenter reduces this loss by using a wood with large thickness (e>3cm), but mixing to homogenize the product is still hard to perform. Automatic fermenters are not rentable for most of producers. Heat (T>45°C) and acidity produced during the fermentation by microbiology activity of yeasts and bacteria are enabling the emergence of potential flavor and taste of future chocolate. In this study, a cylindro-rotative fermenter (FCR-V1) has been built and coconut fibers were used in its structure to confine heat. An axis of rotation (360°) has been integrated to facilitate the turning and homogenization of beans in the fermenter. This axis permits to put fermenter in a vertical position during the anaerobic alcoholic phase of fermentation, and horizontally during acetic phase to take advantage of the mid height filling. For circulation of air flow during turning in acetic phase, two woven rattan with grid have been made, one for the top and second for the bottom of the fermenter. In order to reduce air flow during acetic phase, two airtight covers are put on each grid cover. The efficiency of the turning by this kind of rotation, coupled with homogenization of the temperature, caused by the horizontal position in the acetic phase of the fermenter, contribute to having a good proportion of well-fermented beans (83.23%). In addition, beans’pH values ranged between 4.5 and 5.5. These values are ideal for enzymatic activity in the production of the aromatic compounds inside beans. The regularity of mass loss during all fermentation makes it possible to predict the drying surface corresponding to the amount being fermented.

Chemical and Sensory Properties of Chardonnay Wines Produced in Different Oak Barrels

French oak and American oak barrels are most famous all over the world, but barrels of different origin can also be used for obtaining high quality wines. The aim of this research was to compare the influence of different Slovenian (Croatian) and French oak barrels on the quality of Chardonnay wine. Grapes were grown in the Croatian wine growing region of Kutjevo in 2015. Chardonnay wines were tested for basic oenological parameters (alcohol, extract, reducing sugar, SO2, acidity), total polyphenols content (Folin-Ciocalteu method), antioxidant activity (ABTS and DPPH method) and colour density. Sensory evaluation was performed by students of viticulture/oenology. Samples produced by classical fermentation and ageing in French oak barrels had better results for polyphenols and sensory evaluation (especially low toasting level) than samples in Slovenian barrels. All tested samples were scored as a “quality” or “premium quality” wines. Sur lie method of fermentation and ageing in Slovenian oak barrel had very good extraction of polyphenols and high antioxidant activity with the usage of authentic yeasts, while commercial yeast strain resulted in worse chemical and sensory parameters.

Influence of Yeast Strains on Microbiological Stability of Wheat Bread

Problem of food preservation is extremely important for mankind. Viscous damage ("illness") of bread results from development of Bacillus spp. bacteria. High temperature resistant spores of this microorganism are steady against 120°C) and remain in bread during pastries, potentially causing spoilage of the final product. Scientists are interested in further characterization of bread spoiling Bacillus spp. species. Our aim was to find weather yeast Saccharomyces cerevisiae strains that are able to produce natural antimicrobial killer factor can preserve bread illness. By diffusion method, we showed yeast antagonistic activity against spore-forming bacteria. Experimental technological parameters were the same as for bakers' yeasts production on the industrial scale. Risograph test during dough fermentation demonstrated gas production. The major finding of the study was a clear indication of the presence of killer yeast strain antagonistic activity against rope in bread causing bacteria. After demonstrating antagonistic effect of S. cerevisiae on bacteria using solid nutrient medium, we tested baked bread under provocative conditions. We also measured formation of carbon dioxide in the dough, dough-making duration and quality of the final products, when using different strains of S. cerevisiae. It is determined that the use of yeast S. cerevisiae RCAM 01730 killer strain inhibits appearance of rope in bread. Thus, natural yeast antimicrobial killer toxin, produced by some S. cerevisiae strains is an anti-rope in bread protector.

Robust Batch Process Scheduling in Pharmaceutical Industries: A Case Study

Batch production plants provide a wide range of scheduling problems. In pharmaceutical industries a batch process is usually described by a recipe, consisting of an ordering of tasks to produce the desired product. In this research work we focused on pharmaceutical production processes requiring the culture of a microorganism population (i.e. bacteria, yeasts or antibiotics). Several sources of uncertainty may influence the yield of the culture processes, including (i) low performance and quality of the cultured microorganism population or (ii) microbial contamination. For these reasons, robustness is a valuable property for the considered application context. In particular, a robust schedule will not collapse immediately when a cell of microorganisms has to be thrown away due to a microbial contamination. Indeed, a robust schedule should change locally in small proportions and the overall performance measure (i.e. makespan, lateness) should change a little if at all. In this research work we formulated a constraint programming optimization (COP) model for the robust planning of antibiotics production. We developed a discrete-time model with a multi-criteria objective, ordering the different criteria and performing a lexicographic optimization. A feasible solution of the proposed COP model is a schedule of a given set of tasks onto available resources. The schedule has to satisfy tasks precedence constraints, resource capacity constraints and time constraints. In particular time constraints model tasks duedates and resource availability time windows constraints. To improve the schedule robustness, we modeled the concept of (a, b) super-solutions, where (a, b) are input parameters of the COP model. An (a, b) super-solution is one in which if a variables (i.e. the completion times of a culture tasks) lose their values (i.e. cultures are contaminated), the solution can be repaired by assigning these variables values with a new values (i.e. the completion times of a backup culture tasks) and at most b other variables (i.e. delaying the completion of at most b other tasks). The efficiency and applicability of the proposed model is demonstrated by solving instances taken from a real-life pharmaceutical company. Computational results showed that the determined super-solutions are near-optimal.

Damage to Strawberries Caused by Simulated Transport

The quality and condition of perishable products delivered to the market and their subsequent selling prices are directly affected by the care taken during harvesting and handling. Mechanical injury, in fact, occurs at all stages, from pre-harvest operations through post-harvest handling, packing and transport to the market. The main implications of this damage are the reduction of the product’s quality and economical losses related to the shelf life diminution. For most perishable products, the shelf life is relatively short and it is typically dictated by microbial growth related to the application of dynamic and static loads during transportation. This paper presents the correlation between vibration levels and microbiological growth on strawberries and woodland strawberries and detects the presence of volatile organic compounds (VOC) in order to develop an intelligent logistic unit capable of monitoring VOCs using a specific sensor system. Fresh fruits were exposed to vibrations by means of a vibrating table in a temperature-controlled environment. Microbiological analyses were conducted on samples, taken at different positions along the column of the crates. The values obtained were compared with control samples not exposed to vibrations and the results show that different positions along the column influence the development of bacteria, yeasts and filamentous fungi.

Antimicrobial Potentials of Flavonoids Isolated from Tagetes erecta

In this study, we are interested in a species of the family of Asteraceae (Tagetes erecta). This family is considered as a source of antimicrobial extracts with strong capacity. The extraction of the flavonoids is carried out by the method of liquid/liquid with the use of successive solvents. Afterwards, we evaluated the biological activity of the flavonoids on five pathogenic bacterial stocks such as Escherichia coli, Bacillus subtilis, Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus and two stocks of yeasts to knowing Candida albicans) and Saccharomyces cerevisiae, by employing the method of the aromatogramme starting from a solid disc. The result of the antimicrobial activity shows an action and a variable degree of sensitivity according to bacterial stocks tested. It will be noted that the flavonoids have an inhibiting effect on E. coli, B. subtilis, K. pneumoniae and S. aureus. But a resistance with respect to the extract by P. aeruginosa, C. albicans and S. cerevisiae is to be mentioned.

Inhibitory Effects of Extracts and Isolates from Kigelia africana Fruits against Pathogenic Bacteria and Yeasts

Kigelia africana (Lam.) Benth. (Bignoniaceae) is a reputed traditional remedy for various human ailments such as skin diseases, microbial infections, melanoma, stomach troubles, metabolic disorders, malaria and general pains. In spite of the fruit being widely used for purposes related to its antibacterial and antifungal properties, the chemical constituents associated with the activity have not been fully identified. To elucidate the active principles, we evaluated the antimicrobial activity of fruit extracts and purified fractions against Staphylococcus aureus, Enterococcus faecalis, Moraxella catarrhalis, Escherichia coli, Candida albicans and Candida tropicalis. Shade-dried fruits were powdered and extracted with hydroalcoholic (1:1) mixture by soaking at room temperature for 72 h. The crude extract was further fractionated by column chromatography, with successive elution using hexane, dichloromethane, ethyl acetate, acetone and methanol. The dichloromethane and ethyl acetate fractions were combined and subjected to column chromatography to furnish a wax and oil from the eluates of 20% and 40% ethyl acetate in hexane, respectively. The GC-MS and GC×GC-MS results revealed that linoleic acid, linolenic acid, palmitic acid, arachidic acid and stearic acid were the major constituents in both oil and wax. The crude hydroalcoholic extract exhibited the strongest activity with MICs of 0.125-0.5 mg/mL, followed by the ethyl acetate (MICs = 0.125-1.0 mg/mL), dichloromethane (MICs = 0.250-2.0 mg/mL), hexane (MICs = 0.25- 2.0 mg/mL), acetone (MICs = 0.5-2.0 mg/mL) and methanol (MICs = 1.0-2.0 mg/mL), whereas the wax (MICs = 2.0-4.0 mg/mL) and oil (MICs = 4.0-8.0 mg/mL) showed poor activity. The study concludes that synergistic interactions of chemical constituents could be responsible for the antimicrobial activity of K. africana fruits, which needs a more holistic approach to understand the mechanism of its antimicrobial activity.

Antimicrobial Agents Produced by Yeasts

Natural antimicrobials are used to preserve foods that can be found in plants, animals, and microorganisms. Antimicrobial substances are natural or artificial agents that produced by microorganisms or obtained semi/total chemical synthesis are used at low concentrations to inhibit the growth of other microorganisms. Food borne pathogens and spoilage microorganisms are inactivated by the use of antagonistic microorganisms and their metabolites. Yeasts can produce toxic proteins or glycoproteins (toxins) that cause inhibition of sensitive bacteria and yeast species. Antimicrobial substance producing phenotypes belonging different yeast genus were isolated from different sources. Toxins secreted by many yeast strains inhibiting the growth of other yeast strains. These strains show antimicrobial activity, inhibiting the growth of mold and bacteria. The effect of antimicrobial agents produced by yeasts can be extremely fast, and therefore may be used in various treatment procedures. Rapid inhibition of microorganisms is possibly caused by microbial cell membrane lipopolysaccharide binding and in activation (neutralization) effect. Antimicrobial agents inhibit the target cells via different mechanisms of action.

Inhibitory Effect of Helichrysum arenarium Essential Oil on the Growth of Food Contaminated Microorganisms

The aim of this study was to determine the antimicrobial effect of Helichrysum arenarium L. essential oil in "in-vitro" condition on the growth of seven microbial species including Bacillus subtilis, Escherichia coli, Staphylococcus aureus, Saccharomyces cereviciae, Candida albicans, Aspergillus flavus and Aspergillus parasiticus using micro-dilution method. The minimum inhibitory concentration (MIC) and minimum bactericidal or fungicidal concentration (MBC, MFC) were determined for the essential oil at ten concentrations. Finally, the sensitivity of tested microbes to essential oil of H. arenarium was investigated. Results showed that Bacillus subtilis (MIC=781.25 and MBC=6250 µg/ml) was more resistance than two other bacterial species. Among the tested yeasts, Saccharomyces cereviciae (MIC=97.65 and MFC=781.25 µg/ml) was more sensitive than Candida albicans while among the fungal species, growth of Aspergillus parasiticus inhibited at lower concentration of oil than the Aspergillus flavus. The extracted essential oil exhibited the same MIC value in the liquid medium against all fungal strains (48.82 µg/ml), while different activity against A. flavus and A. parasiticus was observed in this medium with MFC values of 6250 and 390.625µg/ml, respectively. The results of the present study indicated that Helichrysum arenarium L essential oil had significant (P

Prevalence and Fungicidal Activity of Endophytic Micromycetes of Plants in Kazakhstan

Endophytic microorganisms are presented in plants of different families growing in the foothills and piedmont plains of Trans-Ili Alatau. It was found that the maximum number of endophytic micromycetes is typical to the Fabaceae family. The number of microscopic fungi in the roots reached (145.9±5.9)×103 CFU/g of plant tissue; yeasts - (79.8±3.5)×102 CFU/g of plant tissue. Basically, endophytic microscopic fungi are typical for underground parts of plants. In contrast, yeasts more infected aboveground parts of plants. Small amount of micromycetes is typical to inflorescence and fruits. Antagonistic activity of selected micromycetes against Fusarium graminearum, Cladosporium sp., Phytophtora infestans and Botrytis cinerea phytopathogens was detected. Strains with a broad, narrow and limited range of action were identified. For further investigations Rh2 and T7 strains were selected, they are characterized by a broad spectrum of fungicidal activity and they formed the large inhibition zones against phytopathogens. Active antagonists are attributed to the Rhodotorula mucilaginosa and Beauveria bassiana species.

Preparation and in vitro Bactericidal and Fungicidal Efficiency of NanoSilver/Methylcellulose Hydrogel

In this work we describe the preparation of NanoSilver/methylcellulose hydrogel containing silver nanoparticles (NPs) for topical bactericidal applications. Highly concentrated dispersion of silver NPs as high as of 5g/L of silver with diameter of 10nm was prepared by reduction of AgNO3 via strong reducing agent NaBH4. Silver NPs were stabilized by addition of sodium polyacrylate in order to prevent their aggregation at such high concentration. This way synthesized silver NPs were subsequently incorporated into methylcellulose suspension at elevated temperature resulting in formation of NanoSilver/methylcellulose hydrogel when temperature cooled down to laboratory conditions. In vitro antibacterial activity assay proved high bactericidal and fungicidal efficiency of silver NPs alone in the form of dispersion as well as in the form of hydrogel against broad spectrum of bacteria and yeasts including highly multiresistant strains such as methicillin-resistant Staphylococcus aureus. A very low concentrations of silver as low as 0.84mg/L Ag in as-prepared dispersion gave antibacterial performance. NanoSilver/methylcellulose hydrogel showed antibacterial action at the lowest used silver concentration equal to 25mg/L. Such prepared NanoSilver/methylcellulose hydrogel represent promising topical antimicrobial formulation for treatment of burns and wounds.

Hydrolysis of Eicchornia crassipes and Egeria densa for Ethanol Production by Yeasts Isolated from Colombian Lake Fúquene

The aquatic plants are a promising renewable energy resource. Lake Fúquene polluting macrophytes, water hyacinth (Eichhornia crassipes C. Mart.) and Brazilian elodea (Egeria densa Planch.), were saccharifiedby different treatments and fermented to ethanol by native yeasts. Among the tested chemical and biological methods for the saccharification, Pleurotus ostreatus at 10% (m/v) was chosen as the best pre-treatment in both macrophytes (P

Microbiological Contamination of Outdoor Air in Marine Durres's Harbour, Albania

Microbial air contamination of the outdoor air in Marine Durres-s Harbour (Durres, Albania) was estimated by sedimentation technique in August-October 2008. The sampling areas were: Ferry Terminal (FT), Fishery Harbor (FH), East Zone (EZ), Fuel Quay (FQ) and Apollonian Beach (AB). The aim of this study was to measure the number of aerobic plate count (mesophilic aerobic bacteria) and fungi (yeasts and molds) in the outdoor air in these areas. The number of colonies that were formed determines the number of cells at the moment in the outdoor air; respectively the number of mesophilic aerobic bacteria and yeasts and molds. The measure of bacteria and fungi used is CFU (Colony Forming Units) per Petri dish. It is said that marine harbours are very polluted areas. The aim of study was the definition of mesophilic aerobic bacteria and yeasts and molds number, and the comparison of microorganisms number in air sampling areas.

Effect of Passive Modified Atmosphere in Different Packaging Materials on Fresh-Cut Mixed Fruit Salad Quality during Storage

Experiments were carried out at the Latvia State Institute of Fruit-Growing in 2011. Fresh-cut minimally processed apple and pear mixed salad were packed by passive modified atmosphere (MAP) in PP containers, which were hermetically sealed by breathable conventional BOPP PropafreshTM P2GAF, and Amcor Agrifresh films. Biodegradable NatureFlexTM NVS INNOVIA Films and VC999 BioPack PLA films coated with a barrier of pure silicon oxide (SiOx) were used to compare the fresh-cut produce quality with this packed in conventional packaging films. Samples were cold stored at temperature +4.0±0.5 °C up to 10 days. The quality of salad was evaluated by physicochemical properties – weight losses, moisture, firmness, the effect of packaging modes on the colour, dynamics in headspace atmosphere concentration (CO2 and O2), titratable acidity values, as well as by microbiological contamination (yeasts, moulds and total bacteria count) of salads, analyzing before packaging and after 2, 4, 6, 8, and 10 storage days.

Microbiological Assessment of Yoghurt Enriched with Flakes from Barley Grain and Malt Extract during Shelf-Life

The effect of flakes from biologically activated hullless barley grain and malt extract on microbiological safety of yoghurt was studied. Pasteurized milk, freeze-dried yoghurt culture YF-L811 (Chr. Hansen, Denmark), flakes from biologically activated hull-less barley grain (Latvia) and malt extract (Ilgezeem, Latvia) were used for experiments. Yoghurt samples with flakes from biologically activated hull-less barley grain and malt extract were analyzed for total plate count of mesophylic aerobic and facultative anaerobic microorganisms, as well yeasts and moulds population during shelflife. Results showed that the changes of pH and titratable acidity affected the concentration of added malt extract. The lowest pH and the highest titratable acidity were determined in samples YFBG5% ME4% and YFBG5% ME6% on the 14th day. The total plate count decreased in all yoghurt samples except sample YFBG5% ME6%, where was determined the increase of microorganisms from 7th till 14th day. The adding of flakes from biologically activated hull-less barley grain in yoghurt samples caused the higher initial content of yeasts and moulds comparing with control. The growth of yeasts and moulds during shelf-life provided the added malt extract in yoghurt samples. Yoghurt enriched with flakes from biologically activated hull-less barley grain and malt extract from a microbiological perspective is safe product.

Effect of Commercial or Bovine Yeasts on the Performance and Blood Variables of Broiler Chickens Intoxicated with Aflatoxins

The effects of commercial or bovine yeasts on the performance and blood variables of broiler chickens intoxicated with aflatoxin were investigated in broilers. Four hundred eighty broilers (Arbor Acres; 3-wk-old) were randomly assigned to 4 groups. Each group (120 broiler chickens) was further randomly divided into 6 replicates of 20 chickens. The treatments were control diet without additives (treatment 1), 250 ppb AFB1 (treatment 2), commercial yeast, Saccharomyces cerevisiae, (CY 2.5 x 107 CFU/g) + 250 ppb AFB1 (treatment 3) and bovine yeast, Saccharomyces cerevisiae, (BY 2.5 x 107 CFU/g + 250 ppb AFB1 (treatment 4). Complete randomized design (CRD) was used in the experiment. Feed consumption and body weight were recorded at every five-day period. On day 42, carcass compositions were determined from 30 birds per treatment. While chicks were sacrificed, 3-4 ml blood sample was taken and stored frozen at (-20°C) for serum chemical analysis to determine effects of consumption of diets on blood chemistry (total protein, albumin, glucose, urea, cholesterol and triglycerides). There were no significant differences in ADFI among the treatments(P>0.05). However, BWG, FCR and mortality were highly significantly different (P

Culture of Oleaginous Yeasts in Dairy Industry Wastewaters to Obtain Lipids Suitable for the Production of II-Generation Biodiesel

The oleaginous yeasts Lipomyces starkey were grown in the presence of dairy industry wastewaters (DIW). The yeasts were able to degrade the organic components of DIW and to produce a significant fraction of their biomass as triglycerides. When using DIW from the Ricotta cheese production or residual whey as growth medium, the L. starkey could be cultured without dilution nor external organic supplement. On the contrary, the yeasts could only partially degrade the DIW from the Mozzarella cheese production, due to the accumulation of a metabolic product beyond the threshold of toxicity. In this case, a dilution of the DIW was required to obtain a more efficient degradation of the carbon compounds and an higher yield in oleaginous biomass. The fatty acid distribution of the microbial oils obtained showed a prevalence of oleic acid, and is compatible with the production of a II generation biodiesel offering a good resistance to oxidation as well as an excellent cold-performance.

Biodiversity of Micromycetes Isolated from Soils of Different Agricultures in Kazakhstan and Their Plant Growth Promoting Potential

The comparative analysis of different taxonomic groups of microorganisms isolated from dark chernozem soils under different agricultures (alfalfa, melilot, sainfoin, soybean, rapeseed) at Almaty region of Kazakhstan was conducted. It was shown that the greatest number of micromycetes was typical to the soil planted with alfalfa and canola. Species diversity of micromycetes markedly decreases as it approaches the surface of the root, so that the species composition in the rhizosphere is much more uniform than in the virgin soil. Promising strains of microscopic fungi and yeast with plant growth-promoting activity to agricultures were selected. Among the selected fungi there are representatives of Penicillium bilaiae, Trichoderma koningii, Fusarium equiseti, Aspergillus ustus. The highest rates of growth and development of seedlings of plants observed under the influence of yeasts Aureobasidium pullulans, Rhodotorula mucilaginosa, Metschnikovia pulcherrima. Using molecular - genetic techniques confirmation of the identification results of selected micromycetes was conducted.

Microbial Oil Production by Monoculture and Mixed Cultures of Microalgae and Oleaginous Yeasts using Sugarcane Juice as Substrate

Monoculture and mixed cultures of microalgae and the oleaginous yeast for microbial oil productions were investigated using sugarcane juice as carbon substrate. The monoculture of yeast Torulaspora maleeae Y30, Torulaspora globosa YU5/2 grew faster than that of microalgae Chlorella sp. KKU-S2. In monoculture of T. maleeae Y30, a biomass of 8.267g/L with lipid yield of 0.920g/L were obtained, while 8.333g/L of biomass with lipid yield of 1.141g/L were obtained for monoculture of T. globosa YU5/2. A biomass of 1.933g/L with lipid yield of 0.052g/L was found for monoculture of Chlorella sp. KKU-S2. The biomass concentration in the mixed culture of the oleaginous yeast with microalgae increased faster and was higher compared with that in the monocultures. A biomass of 8.733g/L with lipid yield of 1.564g/L was obtained for a mixed culture of T. maleeae Y30 with Chlorella sp. KKU-S2, while 8.010g/L of biomass with lipid yield of 2.424g/L was found for mixed culture of T. globosa YU5/2 with Chlorella sp. KKU-S2. Maximum cell yield coefficient (YX/S, g/L) was found of 0.323 in monoculture of Chlorella sp. KKU-S2 but low level of both specific yield of lipid (YP/X, g lipid/g cells) of 0.027 and volumetric lipid production rate (QP, g/L/d) of 0.003 were observed. While, maximum YP/X (0.303), QP (0.105) and maximum process product yield (YP/S, 0.061) were obtained in mixed culture of T. globosa YU5/2 with Chlorella sp. KKU-S2. The results obtained from the study shows that mixed culture of yeast with microalgae is a desirable cultivation process for microbial oil production.