Normalizing Scientometric Indicators of Individual Publications Using Local Cluster Detection Methods on Citation Networks

One of the major shortcomings of widely used scientometric indicators is that different disciplines cannot be compared with each other. The issue of cross-disciplinary normalization has been long discussed, but even the classification of publications into scientific domains poses problems. Structural properties of citation networks offer new possibilities, however, the large size and constant growth of these networks asks for precaution. Here we present a new tool that in order to perform cross-field normalization of scientometric indicators of individual publications relays on the structural properties of citation networks. Due to the large size of the networks, a systematic procedure for identifying scientific domains based on a local community detection algorithm is proposed. The algorithm is tested with different benchmark and real-world networks. Then, by the use of this algorithm, the mechanism of the scientometric indicator normalization process is shown for a few indicators like the citation number, P-index and a local version of the PageRank indicator. The fat-tail trend of the article indicator distribution enables us to successfully perform the indicator normalization process.

Learning Outcomes Alignment across Engineering Core Courses

In this paper, a team of faculty members of the Petroleum Institute in Abu Dhabi, UAE representing six different courses across General Engineering (ENGR), Communication (COMM), and Design (STPS) worked together to establish a clear developmental progression of learning outcomes and performance indicators for targeted knowledge, areas of competency, and skills for the first three semesters of the Bachelor of Sciences in Engineering curriculum. The sequences of courses studied in this project were ENGR/COMM, COMM/STPS, and ENGR/STPS. For each course’s nine areas of knowledge, competency, and skills, the research team reviewed the existing learning outcomes and related performance indicators with a focus on identifying linkages across disciplines as well as within the courses of a discipline. The team reviewed existing performance indicators for developmental progression from semester to semester for same discipline related courses (vertical alignment) and for different discipline courses within the same semester (horizontal alignment). The results of this work have led to recommendations for modifications of the initial indicators when incoherence was identified, and/or for new indicators based on best practices (identified through literature searches) when gaps were identified. It also led to recommendations for modifications of the level of emphasis within each course to ensure developmental progression. The exercise has led to a revised Sequence Performance Indicator Mapping for the knowledge, skills, and competencies across the six core courses.

Radar Charts Analysis to Compare the Level of Innovation in Mexico with Most Innovative Countries in Triple Helix Schema Economic and Human Factor Dimension

  This paper seeks to compare the innovation of Mexico from an economic and human perspective, with the seven most innovative countries according to the Global Innovation Index 2013, done by the World Intellectual Property Organization (WIPO). The above analysis suggests nine dimensions: Expenditure on R & D, intellectual property, appropriate environment to conduct business, economic stability, triple helix for R & D, ICT Infrastructure, education, human resources and quality of life. Each dimension is represented by an indicator which is later used to construct a radial graph that compares the innovative capacity of the countries analyzed. As a result, it is proposed a new indicator of innovation called The Area of Innovation. Observations are made from the results, and finally as a conclusion, those items or dimensions in which Mexico suffers lag in innovation are identify.

The Ethics of Instream Flows: Science and Policy in Southern Alberta, Canada

Securing instream flows for aquatic ecosystems is critical for sustainable water management and the promotion of human and environmental health. Using a case study from the semiarid region of southern Alberta (Canada) this paper considers how the determination of instream flow standards requires judgments with respect to: (1) The relationship between instream flow indicators and assessments of overall environmental health; (2) The indicators used to determine adequate instream flows, and; (3) The assumptions underlying efforts to model instream flows given data constraints. It argues that judgments in each of these areas have an inherently ethical component because instream flows have direct effects on the water(s) available to meet obligations to humans and non-humans. The conclusion expands from the case study to generic issues regarding instream flows, the growing water ethics literature and prospects for linking science to policy.

Preparing the Curve Number (CN) and Surface Runoff Coefficient (C) Map of the Basin in the Aghche Watershed, Iran

In this research, a part of Aghche basin in Isfahan province with an area about 2000 hectars, was chosen to be obtain curve number coefficient runoff and W indicator in second Cook method By using aerial photos 1968 and 1995, the satellite data of the IRS in 2008. Then the process of land use changes in the period of study and its effect on the changes of curve number (CN), W indicator and surface runoff coefficient (C) of the basin was investigated. These results showed that on the track of these land use changes the weight averages curve number (CN), surface runoff coefficient (C) and W indicator of the basin were increased to 0.92, 0.02 and 0.78 unit in the first period of study and 1.18, 0.03, 0.99 Unit in the second period of study respectively.