Optimization of Mechanical Properties of Alginate Hydrogel for 3D Bio-Printing Self-Standing Scaffold Architecture for Tissue Engineering Applications

In this study, the mechanical properties of alginate hydrogel material for self-standing 3D scaffold architecture with proper shape fidelity are investigated. In-lab built 3D bio-printer extrusion-based technology is utilized to fabricate 3D alginate scaffold constructs. The pressure, needle speed and stage speed are varied using a computer-controlled system. The experimental result indicates that the concentration of alginate solution, calcium chloride (CaCl2) cross-linking concentration and cross-linking ratios lead to the formation of alginate hydrogel with various gelation states. Besides, the gelling conditions, such as cross-linking reaction time and temperature also have a significant effect on the mechanical properties of alginate hydrogel. Various experimental tests such as the material gelation, the material spreading and the printability test for filament collapse as well as the swelling test were conducted to evaluate the fabricated 3D scaffold constructs. The result indicates that the fabricated 3D scaffold from composition of 3.5% wt alginate solution, that is prepared in DI water and 1% wt CaCl2 solution with cross-linking ratios of 7:3 show good printability and sustain good shape fidelity for more than 20 days, compared to alginate hydrogel that is prepared in a phosphate buffered saline (PBS). The fabricated self-standing 3D scaffold constructs measured 30 mm × 30 mm and consisted of 4 layers (n = 4) show good pore geometry and clear grid structure after printing. In addition, the percentage change of swelling degree exhibits high swelling capability with respect to time. The swelling test shows that the geometry of 3D alginate-scaffold construct and of the macro-pore are rarely changed, which indicates the capability of holding the shape fidelity during the incubation period. This study demonstrated that the mechanical and physical properties of alginate hydrogel could be tuned for a 3D bio-printing extrusion-based system to fabricate self-standing 3D scaffold soft structures. This 3D bioengineered scaffold provides a natural microenvironment present in the extracellular matrix of the tissue, which could be seeded with the biological cells to generate the desired 3D live tissue model for in vitro and in vivo tissue engineering applications.

Analyzing Microblogs: Exploring the Psychology of Political Leanings

Microblogging has become increasingly popular for commenting on current events, spreading gossip, and encouraging individualism--which favors its low-context communication channel. These social media (SM) platforms allow users to express opinions while interacting with a wide range of populations. Hashtags allow immediate identification of like-minded individuals worldwide on a vast array of topics. The output of the analytic tool, Linguistic Inquiry and Word Count (LIWC)--a program that associates psychological meaning with the frequency of use of specific words--may suggest the nature of individuals’ internal states and general sentiments. When applied to groupings of SM posts unified by a hashtag, such information can be helpful to community leaders during periods in which the forming of public opinion happens in parallel with the unfolding of political, economic, or social events. This is especially true when outcomes stand to impact the well-being of the group. Here, we applied the online tools, Google Translate and the University of Texas’s LIWC, to a 90-posting sample from a corpus of Colombian Spanish microblogs. On translated disjoint sets, identified by hashtag as being authored by advocates of voting “No,” advocates voting “Yes,” and entities refraining from hashtag use, we observed the value of LIWC’s Tone feature as distinguishing among the categories and the word “peace,” as carrying particular significance, due to its frequency of use in the data.

Polarization Insensitive Absorber with Increased Bandwidth Using Multilayer Metamaterial

A wide band polarization insensitive metamaterial absorber with bandwidth enhancement in X and C band is proposed. The structure proposed here consists of a periodic unit cell of resonator arrangements in double layer. The proposed structure shows near unity absorption at frequencies of 6.21 GHz and 10.372 GHz spreading over a bandwidth of 1 GHz and 6.21 GHz respectively in X and C bands. The proposed metamaterial absorber is designed so as to increase the bandwidth. The proposed structure is also independent for TE and TM polarization. Because of its simple implementation, near unity absorption and wide bandwidth this dual band polarization insensitive metamaterial absorber can be used for EMI/EMC applications.

Contaminant Transport in Soil from a Point Source

The work sought to understand the pattern of movement of contaminant from a continuous point source through soil. The soil used was sandy-loam in texture. The contaminant used was municipal solid waste landfill leachate, introduced as a point source through an entry point located at the center of top layer of the soil tank. Analyses were conducted after maturity periods of 50 and 80 days. The maximum change in chemical concentration was observed on soil samples at a radial distance of 0.25 m. Finite element approximation based model was used to assess the future prediction, management and remediation in the polluted area. The actual field data collected for the case study were used to calibrate the modeling and thus simulated the flow pattern of the pollutants through soil. MATLAB R2015a was used to visualize the flow of pollutant through the soil. Dispersion coefficient at 0.25 and 0.50 m radial distance from the point of application of leachate shows a measure of the spreading of a flowing leachate due to the nature of the soil medium, with its interconnected channels distributed at random in all directions. Surface plots of metals on soil after maturity period of 80 days shows a functional relationship between a designated dependent variable (Y), and two independent variables (X and Z). Comparison of measured and predicted profile transport along the depth after 50 and 80 days of leachate application and end of the experiment shows that there were no much difference between the predicted and measured concentrations as they were all lying close to each other. For the analysis of contaminant transport, finite difference approximation based model was very effective in assessing the future prediction, management and remediation in the polluted area. The experiment gave insight into the most likely pattern of movement of contaminant as a result of continuous percolations of the leachate on soil. This is important for contaminant movement prediction and subsequent remediation of such soils.

Spreading Japan's National Image through China during the Era of Mass Tourism: The Japan National Tourism Organization’s Use of Sina Weibo

Since China has entered an era of mass tourism, there has been a fundamental change in the way Chinese people approach and perceive the image of other countries. With the advent of the new media era, social networking sites such as Sina Weibo have become a tool for many foreign governmental organizations to spread and promote their national image. Among them, the Japan National Tourism Organization (JNTO) was one of the first foreign official tourism agencies to register with Sina Weibo and actively implement communication activities. Due to historical and political reasons, cognition of Japan's national image by the Chinese has always been complicated and contradictory. However, since 2015, China has become the largest source of tourists visiting Japan. This clearly indicates that the broadening of Japan's national image in China has been effective and has value worthy of reference in promoting a positive Chinese perception of Japan and encouraging Japanese tourism. Within this context and using the method of content analysis in media studies through content mining software, this study analyzed how JNTO’s Sina Weibo accounts have constructed and spread Japan's national image. This study also summarized the characteristics of its content and form, and finally revealed the strategy of JNTO in building its international image. The findings of this study not only add a tourism-based perspective to traditional national image communications research, but also provide some reference for the effective international dissemination of national image in the future.

A Recognition Method of Ancient Yi Script Based on Deep Learning

Yi is an ethnic group mainly living in mainland China, with its own spoken and written language systems, after development of thousands of years. Ancient Yi is one of the six ancient languages in the world, which keeps a record of the history of the Yi people and offers documents valuable for research into human civilization. Recognition of the characters in ancient Yi helps to transform the documents into an electronic form, making their storage and spreading convenient. Due to historical and regional limitations, research on recognition of ancient characters is still inadequate. Thus, deep learning technology was applied to the recognition of such characters. Five models were developed on the basis of the four-layer convolutional neural network (CNN). Alpha-Beta divergence was taken as a penalty term to re-encode output neurons of the five models. Two fully connected layers fulfilled the compression of the features. Finally, at the softmax layer, the orthographic features of ancient Yi characters were re-evaluated, their probability distributions were obtained, and characters with features of the highest probability were recognized. Tests conducted show that the method has achieved higher precision compared with the traditional CNN model for handwriting recognition of the ancient Yi.

The Design of Multiple Detection Parallel Combined Spread Spectrum Communication System

Many jobs in society go underground, such as mine mining, tunnel construction and subways, which are vital to the development of society. Once accidents occur in these places, the interruption of traditional wired communication is not conducive to the development of rescue work. In order to realize the positioning, early warning and command functions of underground personnel and improve rescue efficiency, it is necessary to develop and design an emergency ground communication system. It is easy to be subjected to narrowband interference when performing conventional underground communication. Spreading communication can be used for this problem. However, general spread spectrum methods such as direct spread communication are inefficient, so it is proposed to use parallel combined spread spectrum (PCSS) communication to improve efficiency. The PCSS communication not only has the anti-interference ability and the good concealment of the traditional spread spectrum system, but also has a relatively high frequency band utilization rate and a strong information transmission capability. So, this technology has been widely used in practice. This paper presents a PCSS communication model-multiple detection parallel combined spread spectrum (MDPCSS) communication system. In this paper, the principle of MDPCSS communication system is described, that is, the sequence at the transmitting end is processed in blocks and cyclically shifted to facilitate multiple detection at the receiving end. The block diagrams of the transmitter and receiver of the MDPCSS communication system are introduced. At the same time, the calculation formula of the system bit error rate (BER) is introduced, and the simulation and analysis of the BER of the system are completed. By comparing with the common parallel PCSS communication, we can draw a conclusion that it is indeed possible to reduce the BER and improve the system performance. Furthermore, the influence of different pseudo-code lengths selected on the system BER is simulated and analyzed, and the conclusion is that the larger the pseudo-code length is, the smaller the system error rate is.

A Risk Assessment for the Small Hive Beetle Based on Meteorological Standard Measurements

The Small Hive Beetle, Aethina tumida (Coleoptera: Nitidulidae) is a parasite for honey bee colonies, Apis mellifera, and was recently introduced to the European continent, accidentally. Based on the literature, a model was developed by using regional meteorological variables (daily values of minimum, maximum and mean air temperature as well as mean soil temperature at 50 mm depth) to calculate the time-point of hive invasion by A. tumida in springtime, the development duration of pupae as well as the number of generations of A. tumida per year. Luxembourg was used as a test region for our model for 2005 to 2013. The model output indicates a successful surviving of the Small Hive Beetle in Luxembourg with two up to three generations per year. Additionally, based on our meteorological data sets a first migration of SHB to apiaries can be expected from mid of March up to April. Our approach can be transferred easily to other countries to estimate the risk potential for a successful introduction and spreading of A. tumida in Western Europe.

Highly Accurate Target Motion Compensation Using Entropy Function Minimization

One of the defects of stepped frequency radar systems is their sensitivity to target motion. In such systems, target motion causes range cell shift, false peaks, Signal to Noise Ratio (SNR) reduction and range profile spreading because of power spectrum interference of each range cell in adjacent range cells which induces distortion in High Resolution Range Profile (HRRP) and disrupt target recognition process. Thus Target Motion Parameters (TMPs) effects compensation should be employed. In this paper, such a method for estimating TMPs (velocity and acceleration) and consequently eliminating or suppressing the unwanted effects on HRRP based on entropy minimization has been proposed. This method is carried out in two major steps: in the first step, a discrete search method has been utilized over the whole acceleration-velocity lattice network, in a specific interval seeking to find a less-accurate minimum point of the entropy function. Then in the second step, a 1-D search over velocity is done in locus of the minimum for several constant acceleration lines, in order to enhance the accuracy of the minimum point found in the first step. The provided simulation results demonstrate the effectiveness of the proposed method.

Medical Image Watermark and Tamper Detection Using Constant Correlation Spread Spectrum Watermarking

Data hiding can be achieved by Steganography or invisible digital watermarking. For digital watermarking, both accurate retrieval of the embedded watermark and the integrity of the cover image are important. Medical image security in Teleradiology is one of the applications where the embedded patient record needs to be extracted with accuracy as well as the medical image integrity verified. In this research paper, the Constant Correlation Spread Spectrum digital watermarking for medical image tamper detection and accurate embedded watermark retrieval is introduced. In the proposed method, a watermark bit from a patient record is spread in a medical image sub-block such that the correlation of all watermarked sub-blocks with a spreading code, W, would have a constant value, p. The constant correlation p, spreading code, W and the size of the sub-blocks constitute the secret key. Tamper detection is achieved by flagging any sub-block whose correlation value deviates by more than a small value, ℇ, from p. The major features of our new scheme include: (1) Improving watermark detection accuracy for high-pixel depth medical images by reducing the Bit Error Rate (BER) to Zero and (2) block-level tamper detection in a single computational process with simultaneous watermark detection, thereby increasing utility with the same computational cost.

Projections of Climate Change in the Rain Regime of the Ibicui River Basin

The global concern about climate change has been increasing, since the emission of gases from human activities contributes to the greenhouse effect in the atmosphere, indicating significant impacts to the planet in the coming years. The study of precipitation regime is fundamental for the development of research in several areas. Among them are hydrology, agriculture, and electric sector. Using the climatic projections of the models belonging to the CMIP5, the main objective of the paper was to present an analysis of the impacts of climate change without rainfall in the Uruguay River basin. After an analysis of the results, it can be observed that for the future climate, there is a tendency, in relation to the present climate, for larger numbers of dry events, mainly in the winter months, changing the pluviometric regime for wet summers and drier winters. Given this projected framework, it is important to note the importance of adequate management of the existing water sources in the river basin, since the value of rainfall is reduced for the next years, it may compromise the dynamics of the ecosystems in the region. Facing climate change is fundamental issue for regions and cities all around the world. Society must improve its resilience to phenomenon impacts, and spreading the knowledge among decision makers and citizens is also essential. So, these research results can be subsidies for the decision-making in planning and management of mitigation measures and/or adaptation in south Brazil.

Crashworthiness Optimization of an Automotive Front Bumper in Composite Material

In the last years, the crashworthiness of an automotive body structure can be improved, since the beginning of the design stage, thanks to the development of specific optimization tools. It is well known how the finite element codes can help the designer to investigate the crashing performance of structures under dynamic impact. Therefore, by coupling nonlinear mathematical programming procedure and statistical techniques with FE simulations, it is possible to optimize the design with reduced number of analytical evaluations. In engineering applications, many optimization methods which are based on statistical techniques and utilize estimated models, called meta-models, are quickly spreading. A meta-model is an approximation of a detailed simulation model based on a dataset of input, identified by the design of experiments (DOE); the number of simulations needed to build it depends on the number of variables. Among the various types of meta-modeling techniques, Kriging method seems to be excellent in accuracy, robustness and efficiency compared to other ones when applied to crashworthiness optimization. Therefore the application of such meta-model was used in this work, in order to improve the structural optimization of a bumper for a racing car in composite material subjected to frontal impact. The specific energy absorption represents the objective function to maximize and the geometrical parameters subjected to some design constraints are the design variables. LS-DYNA codes were interfaced with LS-OPT tool in order to find the optimized solution, through the use of a domain reduction strategy. With the use of the Kriging meta-model the crashworthiness characteristic of the composite bumper was improved.

The Role of Physically Adsorbing Species of Oxyhydryl Reagents in Flotation Aggregate Formation

The authors discuss the collecting abilities of desorbable species (DS) of saturated fatty acids. The DS species of the reagent are understood as species capable of moving from the surface of the mineral particle to the bubble at the moment of the rupture of the interlayer of liquid separating these objects of interaction. DS species of carboxylic acids (molecules and ionic-molecular complexes) have the ability to spread over the surface of the bubble. The rate of their spreading at pH 7 and 10 over the water surface is determined. The collectibility criterion of saturated fatty acids is proposed. The values of forces exerted by the spreading DS species of reagents on liquid in the interlayer and the liquid flow rate from the interlayer are determined.

Effect of the Polymer Modification on the Cytocompatibility of Human and Rat Cells

Tissue engineering includes combination of materials and techniques used for the improvement, repair or replacement of the tissue. Scaffolds, permanent or temporally material, are used as support for the creation of the "new cell structures". For this important component (scaffold), a variety of materials can be used. The advantage of some polymeric materials is their cytocompatibility and possibility of biodegradation. Poly(L-lactic acid) (PLLA) is a biodegradable,  semi-crystalline thermoplastic polymer. PLLA can be fully degraded into H2O and CO2. In this experiment, the effect of the surface modification of biodegradable polymer (performed by plasma treatment) on the various cell types was studied. The surface parameters and changes of the physicochemical properties of modified PLLA substrates were studied by different methods. Surface wettability was determined by goniometry, surface morphology and roughness study were performed with atomic force microscopy and chemical composition was determined using photoelectron spectroscopy. The physicochemical properties were studied in relation to cytocompatibility of human osteoblast (MG 63 cells), rat vascular smooth muscle cells (VSMC), and human stem cells (ASC) of the adipose tissue in vitro. A fluorescence microscopy was chosen to study and compare cell-material interaction. Important parameters of the cytocompatibility like adhesion, proliferation, viability, shape, spreading of the cells were evaluated. It was found that the modification leads to the change of the surface wettability depending on the time of modification. Short time of exposition (10-120 s) can reduce the wettability of the aged samples, exposition longer than 150 s causes to increase of contact angle of the aged PLLA. The surface morphology is significantly influenced by duration of modification, too. The plasma treatment involves the formation of the crystallites, whose number increases with increasing time of modification. On the basis of physicochemical properties evaluation, the cells were cultivated on the selected samples. Cell-material interactions are strongly affected by material chemical structure and surface morphology. It was proved that the plasma treatment of PLLA has a positive effect on the adhesion, spreading, homogeneity of distribution and viability of all cultivated cells. This effect was even more apparent for the VSMCs and ASCs which homogeneously covered almost the whole surface of the substrate after 7 days of cultivation. The viability of these cells was high (more than 98% for VSMCs, 89-96% for ASCs). This experiment is one part of the basic research, which aims to easily create scaffolds for tissue engineering with subsequent use of stem cells and their subsequent "reorientation" towards the bone cells or smooth muscle cells.

Great Powers’ Proxy Wars in Middle East and Difficulty in Transition from Cold War to Cold Peace

The developments in the Middle East region have activated the involvement of a numerous diverse state and non-state actors in the regional affairs. The goals, positions, ideologies, different, and even contrast policy behaviors had procured the spreading and continuity of crisis. Non-state actors varying from Islamic organizations to takfiri-terrorist movements on one hand and regional and trans- regional actors, from another side, seek to reach their interests in the power struggle. Here, a research worthy question comes on the agenda: taking into consideration actors’ contradictory interests and constraints what are the regional peace and stability perspectives? Therein, different actors’ aims definition, their actions and behaviors, which affect instability, can be regarded as independent variables; whereas, on the contrary, Middle East peace and stability perspective analysis is a dependent variable. Though, this regional peace and war theory based research admits the significant influence of trans-regional actors, it asserts the roots of violence to derive from region itself. Consequently, hot war and conflict prevention and hot peace assurance in the Middle East region cannot be attained only by demands and approaches of trans-regional actors. Moreover, capacity of trans-regional actors is sufficient only for a cold war or cold peace to be reached in the region. Furthermore, within the framework of current conflict (struggle) between regional actors it seems to be difficult and even impossible to turn the cold war into a cold peace in the region.

Gated Communities and Sense of Community: A Review on the Social Features of Gated Communities

Since the mid-1970s, gated communities distributed in Latin America. They are a kind of residential development where there are privatized public spaces, and access to the area is restricted. They have specific impacts on the neighborhoods that located outside their walls such as threatening security, limiting access, and spreading social inequality. This research mainly focused on social features of gated community as; segregation, fragmentation, exclusion, specifically on sense of community and typology of gated communities. The conclusion will clarify the pros and cons of gated communities and how it could be successful or not.

Response of Local Cowpea to Intra Row Spacing and Weeding Regimes in Yobe State, Nigeria

Weeds are known to interfere seriously with crop growth, thereby affecting the productivity and quality of crops. Crops are also known to compete for natural growth resources if they are not adequately spaced, also affecting the performance of the growing crop. Farmers grow cowpea in mixtures with cereals and this is known to affect its yield. For this reason, a field experiment was conducted at Yobe State College of Agriculture Gujba, Damaturu station in the 2014 and 2015 rainy seasons to determine the appropriate intra row spacing and weeding regime for optimum growth and yield of cowpea (Vigna unguiculata L.) in pure stand in Sudan Savanna ecology. The treatments consist of three levels of spacing within rows (20 cm, 30 cm and 40 cm) and four weeding regimes (none, once at 3 weeks after sowing (WAS), twice at 3 and 6WAS, thrice at 3WAS, 6WAS and 9WAS); arranged in a Randomized Complete Block Design (RCBD) and replicated three times. The variety used was the local cowpea variety (white, early and spreading) commonly grown by farmers. The growth and yield data were collected and subjected to analysis of variance using SAS software, and the significant means were ranked by Students Newman Keul’s test (SNK). The findings of this study revealed better crop performance in 2015 than in 2014 despite poor soil condition. Intra row spacing significantly influenced vegetative growth especially the number of main branches, leaves and canopy spread at 6WAS and 9WAS with the highest values obtained at wider spacing (40 cm). The values obtained in 2015 doubled those obtained in 2014 in most cases. Spacing also significantly affected the number of pods in 2015, seed weight in both years and grain yield in 2014 with the highest values obtained when the crop was spaced at 30-40 cm. Similarly, weeding regime significantly influenced almost all the growth attributes of cowpea with higher values obtained from where cowpea was weeded three times at 3-week intervals, though statistically similar results were obtained even from where cowpea was weeded twice. Weeding also affected the entire yield and yield components in 2015 with the highest values obtained with increase weeding. Based on these findings, it is recommended that spreading cowpea varieties should be grown at 40 cm (or wider spacing) within rows and be weeded twice at three-week intervals for better crop performance in related ecologies.

Web-Based Tools to Increase Public Understanding of Nuclear Technology and Food Irradiation

Food irradiation is a processing and preservation technique to eliminate insects and parasites and reduce disease-causing microorganisms. Moreover, the process helps to inhibit sprouting and delay ripening, extending fresh fruits and vegetables shelf-life. Nevertheless, most Brazilian consumers seem to misunderstand the difference between irradiated food and radioactive food and the general public has major concerns about the negative health effects and environmental contamination. Society´s judgment and decision making are directly linked to perceived benefits and risks. The web-based project entitled ‘Scientific information about food irradiation: Internet as a tool to approach science and society’ was created by the Nuclear and Energetic Research Institute (IPEN), in order to offer an interdisciplinary approach to science education, integrating economic, ethical, social and political aspects of food irradiation. This project takes into account that, misinformation and unfounded preconceived ideas impact heavily on the acceptance of irradiated food and purchase intention by the Brazilian consumer. Taking advantage of the potential value of the Internet to enhance communication and education among general public, a research study was carried out regarding the possibilities and trends of Information and Communication Technologies among the Brazilian population. The content includes concepts, definitions and Frequently Asked Questions (FAQ) about processes, safety, advantages, limitations and the possibilities of food irradiation, including health issues, as well as its impacts on the environment. The project counts on eight self-instructional interactive web courses, situating scientific content in relevant social contexts in order to encourage self-learning and further reflections. Communication is a must to improve public understanding of science. The use of information technology for quality scientific divulgation shall contribute greatly to provide information throughout the country, spreading information to as many people as possible, minimizing geographic distances and stimulating communication and development.

Drop Impact Study on Flexible Superhydrophobic Surface Containing Micro-Nano Hierarchical Structures

Superhydrophobic surfaces are abundant in nature. Several surfaces such as wings of butterfly, legs of water strider, feet of gecko and the lotus leaf show extreme water repellence behaviour. Self-cleaning, stain-free fabrics, spill-resistant protective wears, drag reduction in micro-fluidic devices etc. are few applications of superhydrophobic surfaces. In order to design robust superhydrophobic surface, it is important to understand the interaction of water with superhydrophobic surface textures. In this work, we report a simple coating method for creating large-scale flexible superhydrophobic paper surface. The surface consists of multiple layers of silanized zirconia microparticles decorated with zirconia nanoparticles. Water contact angle as high as 159±10 and contact angle hysteresis less than 80 was observed. Drop impact studies on superhydrophobic paper surface were carried out by impinging water droplet and capturing its dynamics through high speed imaging. During the drop impact, the Weber number was varied from 20 to 80 by altering the impact velocity of the drop and the parameters such as contact time, normalized spread diameter were obtained. In contrast to earlier literature reports, we observed contact time to be dependent on impact velocity on superhydrophobic surface. Total contact time was split into two components as spread time and recoil time. The recoil time was found to be dependent on the impact velocity while the spread time on the surface did not show much variation with the impact velocity. Further, normalized spreading parameter was found to increase with increase in impact velocity.

The Examination of Prospective ICT Teachers’ Attitudes towards Application of Computer Assisted Instruction

Nowadays, thanks to development of technology, integration of technology into teaching and learning activities is spreading. Increasing technological literacy which is one of the expected competencies for individuals of 21st century is associated with the effective use of technology in education. The most important factor in effective use of technology in education institutions is ICT teachers. The concept of computer assisted instruction (CAI) refers to the utilization of information and communication technology as a tool aided teachers in order to make education more efficient and improve its quality in the process of educational. Teachers can use computers in different places and times according to owned hardware and software facilities and characteristics of the subject and student in CAI. Analyzing teachers’ use of computers in education is significant because teachers are the ones who manage the course and they are the most important element in comprehending the topic by students. To accomplish computer-assisted instruction efficiently is possible through having positive attitude of teachers. Determination the level of knowledge, attitude and behavior of teachers who get the professional knowledge from educational faculties and elimination of deficiencies if any are crucial when teachers are at the faculty. Therefore, the aim of this paper is to identify ICT teachers' attitudes toward computer-assisted instruction in terms of different variables. Research group consists of 200 prospective ICT teachers studying at Necmettin Erbakan University Ahmet Keleşoğlu Faculty of Education CEIT department. As data collection tool of the study; “personal information form” developed by the researchers and used to collect demographic data and "the attitude scale related to computer-assisted instruction" are used. The scale consists of 20 items. 10 of these items show positive feature, while 10 of them show negative feature. The Kaiser-Meyer-Olkin (KMO) coefficient of the scale is found 0.88 and Barlett test significance value is found 0.000. The Cronbach’s alpha reliability coefficient of the scale is found 0.93. In order to analyze the data collected by data collection tools computer-based statistical software package used; statistical techniques such as descriptive statistics, t-test, and analysis of variance are utilized. It is determined that the attitudes of prospective instructors towards computers do not differ according to their educational branches. On the other hand, the attitudes of prospective instructors who own computers towards computer-supported education are determined higher than those of the prospective instructors who do not own computers. It is established that the departments of students who previously received computer lessons do not affect this situation so much. The result is that; the computer experience affects the attitude point regarding the computer-supported education positively.