Improved Multi-Objective Particle Swarm Optimization Applied to Design Problem

Aiming at optimizing the weight and deflection of cantilever beam subjected to maximum stress and maximum deflection, Multi-objective Particle Swarm Optimization (MOPSO) with Utopia Point based local search is implemented. Utopia point is used to govern the search towards the Pareto Optimal set. The elite candidates obtained during the iterations are stored in an archive according to non-dominated sorting and also the archive is truncated based on least crowding distance. Local search is also performed on elite candidates and the most diverse particle is selected as the global best. This method is implemented on standard test functions and it is observed that the improved algorithm gives better convergence and diversity as compared to NSGA-II in fewer iterations. Implementation on practical structural problem shows that in 5 to 6 iterations, the improved algorithm converges with better diversity as evident by the improvement of cantilever beam on an average of 0.78% and 9.28% in the weight and deflection respectively compared to NSGA-II.

Easy-Interactive Ordering of the Pareto Optimal Set with Imprecise Weights

In the multi objective optimization, in the case when generated set of Pareto optimal solutions is large, occurs the problem to select of the best solution from this set. In this paper, is suggested a method to order of Pareto set. Ordering the Pareto optimal set carried out in conformity with the introduced distance function between each solution and selected reference point, where the reference point may be adjusted to represent the preferences of a decision making agent. Preference information about objective weights from a decision maker may be expressed imprecisely. The developed elicitation procedure provides an opportunity to obtain surrogate numerical weights for the objectives, and thus, to manage impreciseness of preference. The proposed method is a scalable to many objectives and can be used independently or as complementary to the various visualization techniques in the multidimensional case.

DEMO Based Optimal Power Purchase Planning Under Electricity Price Uncertainty

Due to the deregulation of the Electric Supply Industry and the resulting emergence of electricity market, the volumes of power purchases are on the rise all over the world. In a bid to meet the customer-s demand in a reliable and yet economic manner, utilities purchase power from the energy market over and above its own production. This paper aims at developing an optimal power purchase model with two objectives viz economy and environment ,taking various functional operating constraints such as branch flow limits, load bus voltage magnitudes limits, unit capacity constraints and security constraints into consideration.The price of purchased power being an uncertain variable is modeled using fuzzy logic. DEMO (Differential Evolution For Multi-objective Optimization) is used to obtain the pareto-optimal solution set of the multi-objective problem formulated. Fuzzy set theory has been employed to extract the best compromise non-dominated solution. The results obtained on IEEE 30 bus system are presented and compared with that of NSGAII.