The Effect of Temperature and Salinity on the Growth and Carotenogenesis of Three Dunaliella Species (Dunaliella sp. Lake Isolate, D. salina CCAP 19/18, and D. bardawil LB 2538) Cultivated under Laboratory Conditions

In this study, 3 species of Dunaliella (Dunaliella sp. Salt Lake isoalte (Tuz Gölü), Dunaliella salina CCAP19/18, and Dunaliella bardawil LB 2538) and their optical density, dry matter, chlorophyll a, total carotenoids, and β-carotene production were investigated in a batch system. The aim of this research was to compare carotenoids, and β-carotene production were investigated in a batch those 3 species. Therefore 2 stress factors were used: 2 different temperatures (20°C and 30°C) and 2 different salinities (30‰, and 60‰) were tested over a 17-day study. The highest growth and chlorophyll a was reported for Dunaliella sp. under 20°C/30‰ and 20°C/60‰ conditions respectively followed by D. bardawil and D. salina. Significant differences were noticed (p

Effect of Fire Retardant Painting Product on Smoke Optical Density of Burning Natural Wood Samples

Natural wood is used in many applications in Jordan such as furniture, partitions constructions, and cupboards. Experimental work for smoke produced by the combustion of certain wood samples was studied. Smoke generated from burning of natural wood, is considered as a major cause of death in furniture fires. The critical parameter for life safety in fires is the available time for escape, so the visual obscuration due to smoke release during fire is taken into consideration. The effect of smoke, produced by burning of wood, depends on the amount of smoke released in case of fire. The amount of smoke production, apparently, affects the time available for the occupants to escape. To achieve the protection of life of building occupants during fire growth, fire retardant painting products are tested. The tested samples of natural wood include Beech, Ash, Beech Pine, and white Beech Pine. A smoke density chamber manufactured by fire testing technology has been used to perform measurement of smoke properties. The procedure of test was carried out according to the ISO-5659. A nonflammable vertical radiant heat flux of 25 kW/m2 is exposed to the wood samples in a horizontal orientation. The main objective of the current study is to carry out the experimental tests for samples of natural woods to evaluate the capability to escape in case of fire and the fire safety requirements. Specific optical density, transmittance, thermal conductivity, and mass loss are main measured parameters. Also, comparisons between samples with paint and with no paint are carried out between the selected samples of woods.

Characterization of the Microbial Induced Carbonate Precipitation Technique as a Biological Cementing Agent for Sand Deposits

The population increase in Egypt is urging for horizontal land development which became a demand to allow the benefit of different natural resources and expand from the narrow Nile valley. However, this development is facing challenges preventing land development and agriculture development. Desertification and moving sand dunes in the west sector of Egypt are considered the major obstacle that is blocking the ideal land use and development. In the proposed research, the sandy soil is treated biologically using Bacillus pasteurii bacteria as these bacteria have the ability to bond the sand partials to change its state of loose sand to cemented sand, which reduces the moving ability of the sand dunes. The procedure of implementing the Microbial Induced Carbonate Precipitation Technique (MICP) technique is examined, and the different factors affecting on this process such as the medium of bacteria sample preparation, the optical density (OD600), the reactant concentration, injection rates and intervals are highlighted. Based on the findings of the MICP treatment for sandy soil, conclusions and future recommendations are reached.

Evaluation of Electro-Flocculation for Biomass Production of Marine Microalgae Phaodactylum tricornutum

The commercial production of biodiesel using microalgae demands a high-energy input for harvesting biomass, making production economically unfeasible. Methods currently used involve mechanical, chemical, and biological procedures. In this work, a flocculation system is presented as a cost and energy effective process to increase biomass production of Phaeodactylum tricornutum. This diatom is the only species of the genus that present fast growth and lipid accumulation ability that are of great interest for biofuel production. The algae, selected from the Bank of Microalgae, Institute of Biology, Federal University of Bahia (Brazil), have been bred in tubular reactor with photoperiod of 12 h (clear/dark), providing luminance of about 35 μmol photons m-2s-1, and temperature of 22 °C. The medium used for growing cells was the Conway medium, with addition of silica. The seaweed growth curve was accompanied by cell count in Neubauer camera and by optical density in spectrophotometer, at 680 nm. The precipitation occurred at the end of the stationary phase of growth, 21 days after inoculation, using two methods: centrifugation at 5000 rpm for 5 min, and electro-flocculation at 19 EPD and 95 W. After precipitation, cells were frozen at -20 °C and, subsequently, lyophilized. Biomass obtained by electro-flocculation was approximately four times greater than the one achieved by centrifugation. The benefits of this method are that no addition of chemical flocculants is necessary and similar cultivation conditions can be used for the biodiesel production and pharmacological purposes. The results may contribute to improve biodiesel production costs using marine microalgae.

Identification of the Antimicrobial Effect of Liquorice Extracts on Gram-Positive Bacteria: Determination of Minimum Inhibitory Concentration and Mechanism of Action Using a luxABCDE Reporter Strain

Natural preservatives have been used as alternatives to traditional chemical preservatives; however, a limited number have been commercially developed and many remain to be investigated as sources of safer and effective antimicrobials. In this study, we have been investigating the antimicrobial activity of an extract of Glycyrrhiza glabra (liquorice) that was provided as a waste material from the production of liquorice flavourings for the food industry, and to investigate if this retained the expected antimicrobial activity so it could be used as a natural preservative. Antibacterial activity of liquorice extract was screened for evidence of growth inhibition against eight species of Gram-negative and Gram-positive bacteria, including Listeria monocytogenes, Listeria innocua, Staphylococcus aureus, Enterococcus faecalis and Bacillus subtilis. The Gram-negative bacteria tested include Pseudomonas aeruginosa, Escherichia coli and Salmonella typhimurium but none of these were affected by the extract. In contrast, for all of the Gram-positive bacteria tested, growth was inhibited as monitored using optical density. However parallel studies using viable count indicated that the cells were not killed meaning that the extract was bacteriostatic rather than bacteriocidal. The Minimum Inhibitory Concentration [MIC] and Minimum Bactericidal Concentration [MBC] of the extract was also determined and a concentration of 50 µg ml-1 was found to have a strong bacteriostatic effect on Gram-positive bacteria. Microscopic analysis indicated that there were changes in cell shape suggesting the cell wall was affected. In addition, the use of a reporter strain of Listeria transformed with the bioluminescence genes luxABCDE indicated that cell energy levels were reduced when treated with either 12.5 or 50 µg ml-1 of the extract, with the reduction in light output being proportional to the concentration of the extract used. Together these results suggest that the extract is inhibiting the growth of Gram-positive bacteria only by damaging the cell wall and/or membrane.

Biosynthesis of Titanium Dioxide Nanoparticles and Their Antibacterial Property

This paper presents a low-cost, eco-friendly and reproducible microbe mediated biosynthesis of TiO2 nanoparticles. TiO2 nanoparticles synthesized using the bacterium, Bacillus subtilis, from titanium as a precursor, were confirmed by TEM analysis. The morphological characteristics state spherical shape, with the size of individual or aggregate nanoparticles, around 30-40 nm. Microbial resistance represents a challenge for the scientific community to develop new bioactive compounds. Here, the antibacterial effect of TiO2 nanoparticles on Escherichia coli was investigated, which was confirmed by CFU (Colony-forming unit). Further, growth curve study of E. coli Hb101 in the presence and absence of TiO2 nanoparticles was done. Optical density decrease was observed with the increase in the concentration of TiO2. It could be attributed to the inactivation of cellular enzymes and DNA by binding to electron-donating groups such as carboxylates, amides, indoles, hydroxyls, thiols, etc. which cause little pores in bacterial cell walls, leading to increased permeability and cell death. This justifies that TiO2 nanoparticles have efficient antibacterial effect and have potential to be used as an antibacterial agent for different purposes.

Chemical Characterization and Prebiotic Effect of Water-Soluble Polysaccharides from Zizyphus lotus Leaves

In order to investigate the prebiotic potential of oligosaccharides prepared by chemical hydrolysis of water-soluble polysaccharides (WSP) from Zizyphus lotus leaves, the effect of oligosaccharides on bacterial growth was studied. The chemical composition of WSP was evaluated by colorimetric assays revealed the average values: 7.05±0.73% proteins and 86.21±0.74% carbohydrates, among them 64.81±0.42% is neutral sugar and the rest 16.25±1.62% is uronic acids. The characterization of monosaccharides was determined by high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) was found to be composed of galactose (23.95%), glucose (21.30%), rhamnose (20.28%), arabinose (9.55%), and glucuronic acid (22.95%). The effects of oligosaccharides on the growth of lactic acid bacteria were compared with those of fructooligosaccharide (RP95). The oligosaccharides concentration was 1g/L of Man, Rogosa, Sharpe broth. Bacterial growth was assessed during 2, 4.5, 6.5, 9, 12, 16 and 24 h by measuring the optical density of the cultures at 600 nm (OD600) and pH values. During fermentation, pH in broth cultures decreased from 6.7 to 5.87±0.15. The enumeration of lactic acid bacteria indicated that oligosaccharides led to a significant increase in bacteria (P≤0.05) compared to the control. The fermentative metabolism appeared to be faster on RP95 than on oligosaccharides from Zizyphus lotus leaves. Both RP95 and oligosaccharides showed clear prebiotic effects, but had differences in fermentation kinetics because of to the different degree of polymerization. This study shows the prebiotic effectiveness of oligosaccharides, and provides proof for the selection of leaves of Zizyphus lotus for use as functional food ingredients.

Optical Properties of WO3-NiO Complementary Electrochromic Devices

In this study, we developed a complementary electrochromic device consisting of WO3 and NiO films fabricated by rf-magnetron sputtered. The electrochromic properties of WO3 and NiO films were investigated using cyclic voltammograms (CV), performed on WO3 and NiO films immersed in an electrolyte of 1 M LiClO4 in propylene carbonate (PC). Optical and electrochemical of the films, as a function of coloration–bleaching cycle, were characterized using an UV-Vis-NIR spectrophotometer and cyclic voltammetry (CV). After investigating the properties of WO3 film, NiO film, and complementary electrochromic devices, we concluded that this device provides good reversibility, low power consumption of -2.5 V in color state, high variation of transmittance of 58.96%, changes in optical density of 0.81 and good memory effect under open-circuit conditions. In addition, electrochromic component penetration rate can be retained below 20% within 24h, showing preferred memory features; however, component coloring and bleaching response time are about 33s.

Regulatory Effects of Carbon Sources on Tabtoxin Production (A β-lactam Phytotoxin of Pseudomonas syringae pv. tabaci)

The effects of divers carbon substrates were investigated for the tabtoxin production of an isolated pathogenic Pseudomonas syringae pv. tabaci, the causal agent of wildfire of tobacco and are discussed in relation to the bacterium growth. The isolated organism was grown in batch culture on Woolley's medium (28°C, 200 rpm, during 5 days). The growth has been measured by the optical density (OD) at 620 nm and the tabtoxin production quantified by Escherichia coli (K-12) bioassay technique. The growth and the tabtoxin production were both influenced by the substrates (sugars, amino acids, organic acids) used, each, as a sole carbon source and as a supplement for the same amino acids. The most significant quantities of tabtoxin were obtained in presence of some amino acids used as sole carbon source and/or as supplement.

The Influence of Low Power Microwave Radiation on the Growth Rate of Listeria Monocytogenes

Variations in the growth rate constant of the Listeria monocytogenes bacterial species were determined at 37°C in irradiated environments and compared to the situation of a nonirradiated environment. The bacteria cells, contained in a suspension made of a nutrient solution of Brain Heart Infusion, were made to grow at different frequency (2.30e2.60 GHz) and power (0e400 mW) values, in a plug flow reactor positioned in the irradiated environment. Then the reacting suspension was made to pass into a cylindrical cuvette where its optical density was read every 2.5 minutes at a wavelength of 600 nm. The obtained experimental data of optical density vs. time allowed the bacterial growth rate constant to be derived; this was found to be slightly influenced by microwave power, but not by microwave frequency; in particular, a minimum value was found for powers in the 50e150 mW field.

The Effect of Dispersed MWCNTs Using SDBS Surfactant on Bacterial Growth

Carbon nanotubes (CNTs) are attractive because of their excellent chemical durability mechanical strength and electrical properties. Therefore there is interest in CNTs for not only electrical and mechanical application, but also biological and medical application. In this study, the dispersion power of surfactant-treated multiwalled carbon nanotubes (MWCNTs) and their effect on the antibacterial activity were examined. Surfactant was used sodium dodecyl-benzenesulfonate (SDBS). UV-vis absorbance and transmission electron microscopy(TEM) were used to characterize the dispersion of MWCNTs in the aqueous phase, showing that the surfactant molecules had been adsorbed onto the MWCNTs surface. The surfactant-treated MWCNTs exhibited antimicrobial activities to streptococcus mutans. The optical density growth curves and viable cell number determined by the plating method suggested that the antimicrobial activity of surfactant-treated MWCNTs was both concentration and treatment time-dependent.

Characterization of HD-V2 Gafchromic Film for Measurement of Spatial Dose Distribution from Alpha Particle of 5.5 MeV

The purpose of this study was to investigate the response of the newly released Gafchromic HD-V2 film for alpha particle of 5.5 MeV. Gafchromic HD-V2 was exposed to alpha particles of energy 5 MeV from 241Am for different durations. Then the films were scanned with a flatbed scanner. The dose response curve up to 2200 Gy has been achieved. The film’s reproducibility and sensitivity were evaluated. The results obtained show that the net optical density increases almost exponentially with the increase in the exposure time, and it becomes saturated after prolonged exposure times. The red channel shows the highest sensitivity, with a value of 4 x 10-3 Gy-1 at netOD of 0.4. The inter-film reproducibility was measured and the relative uncertainty found was 1.7 %, 2.1 % and 2.3 % for grey, red and green channels, respectively.