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Abstract—Zero inflated strict arcsine model is a newly developed 

model which is found to be appropriate in modeling overdispersed 
count data. In this study, we extend zero inflated strict arcsine model 
to zero inflated strict arcsine regression model by taking into 
consideration the extra variability caused by  extra zeros and 
covariates in count data. Maximum likelihood estimation method is 
used in estimating the parameters for this zero inflated strict arcsine 
regression model.  
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I. INTRODUCTION 

OUNT data with extra variability   are commonly found 
in various disciplines which include biometrics, 

economics, agriculture, social sciences, transportation 
engineering, epidemiology and medicine.  The extra zeroes or 
covariates are usually the contributing factors to the extra 
variability in count data. Many zero inflated models such as 
zero inflated Poisson, zero inflated negative binomial, zero 
inflated generalized Poisson are developed and extensively 
used in modeling overdispersed count data with excess zeros 
[1]-[5] .  Zero inflated inverse trinomial [6] and zero inflated 
strict arcsine model [7] are newly developed models which 
can be used as alternative models in modeling overdispersed 
count data, but have yet to be researched and used extensively. 
Models which are developed in modeling overdispersed count 
data caused by extra zeros and also covariates are zero inflated 
Poisson regression, zero inflated negative binomial regression 
and zero inflated generalized Poisson regression [8]-[16]. 
Strict arcsine (SA) model is designed in modeling data with 
extra variations, skewed to the left and leptokurtic. Its variance 
is a cubic variance function of mean. Strict arcsine model was 
introduced by Mora [17]. Kokonendji [8] compared the strict 
arcsine distributiuon with Poisson, negative binomial, Poisson 
inverse Gaussian, and generalized Poisson models by using 
the moment method to estimate the parameters. Marque and 
Kokonendji [18] proposed a strict arcsine regression model for 
regression analysis of count. They applied the model to data 
concerning cardiovascular mortality among the elderly.  Phang 
and Loh [8] developed zero inflated strict arcsine (ZISA) 
model and fitted it to both a simulated and a real life data set. 
The study showed that this developed model can be used as an 
alternative model in modeling overdispersed count data. In 
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this paper, we developed zero inflated strict arcsine regression 
model to model overdispersed data where the variations are 
caused by extra zeros and covariates. We apply the maximum 
likelihood estimation method through a global optimization 
routine to estimate the parameters for ZISA regression model.  

Section II of the paper discusses the properties of the SA, 
ZISA, and ZISA regression models, Section III explains fitting 
the two simulated data sets with the developed zero inflated 
strict arcsine regression model and in section IV, we apply 
maximum likelihood estimation in estimating the parameters. 
The results are discussed in section V. Section VI provides a 
short conclusion. 

II. PROPERTIES OF THE DISTRIBUTIONS  

A. The Strict Arcsine Distribution 
The SA distribution was introduced by Letac and Mora 

[17]. Kokonendji [8] studied the properties of the strict arcsine 
distribution and found that the SA distribution is 
overdispersed, skewed to the right and leptokurtic. 

The probability mass function of SA is given by: 
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where 0< α, 0 < p < 1, and A(x; α) is defined as: 
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The recurrence formula of SA is: 
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The likelihood L is given by: 
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and the log-likelihood is: 
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The likelihood score functions are given below: 
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B. The Zero Inflated Strict Arcsine Model 
Phang and Loh [8] developed the zero inflated strict arcsine 

model and fitted it to both a simulated and a real life data sets. 
The study showed that this model can be used in modeling 
count data with excess zeros. 

The probability mass function for ZISA is given by: 
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The likelihood L is given by 
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C. The Zero Inflated Strict Arcsine Regression Model 
The likelihood L and log-likelihood are, respectively, given 

by; 
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where PrZISAREG(k)  is obtainable from equation (9) by 
replacing α with equation (8) where µ= exp(β0+β1xi), i=1, 2… 
We assume that only log of the mean is depend on the 
covariates, ω is a constant which does not depend on the 
covariates. 

III. MODEL FITTING 

A. Simulation 
The newly developed ZISA regression model is fitted to 

two simulated data sets where data set 1, sample size, n=2000, 
p=0.7, β0=1.0, β1=0.5 and ω=0.10 and data set 2, sample size, 
n=5000, p=0.85, β0=-2.5, β1=-025 and ω=0.15. The results are 
shown in Table I and Table II.  

 
TABLE I 

SIMULATION OF ZISA REGRESSION: p=0.70, ω=0.10, β0=1.0, β1=0.5  

  
Observed 
frequency 

 Expected frequency 

XA XB 
TOTAL XA XB TOTAL 

       
0 205 126 331 198.94 131.62 330.57
1 203 83 286 193.36 88.61 281.98
2 198 133 331 195.19 137.99 333.18
3 144 149 293 147.17 150.50 297.67
4 94 135 229 98.23 134.11 232.34
5 59 109 168 62.50 106.23 168.73
6 37 81 118 39.06 78.47 117.53
7 23 58 81 24.33 55.57 79.90
8 14 41 55 15.17 38.35 53.52
9 9 28 37 9.50 26.04 35.55

10 5 19 24 5.98 17.52 23.50
11 3 13 16 3.79 11.71 15.50
12 2 8 10 2.41 7.80 10.21
13 1 6 7 1.54 17.52 6.73
14 1 4 5 0.99 3.44 4.44
15 2 7 9 1.82 6.83 8.65

       
-loglikelihood =4425.91 

 
χ2 = 0.44 

ZISAREGp̂ = 0.7006,  ϖ̂ = 0.1032,  0400.1ˆ
0 =ZISAREGβ , 

4334.0ˆ
 1 =ZISAREGβ  

  
Mean = 3.2315 
Variance =7.9659 
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TABLE II 
SIMULATION OF ZISA REGRESSION: p=0.70, ω=0.15, β0=-2.5,       β1=-0.25  

  
Observed 
frequency 

 Expected frequency 

XA XB 
TOTAL XA XB TOTAL 

       
0 4786 4832 9618 4784.82 4834.91 9619.73 
1 175 138 313 176.44 136.21 312.65 
2 4 2 6 3.82 2.25 6.07 
3 21 17 38 20.88 16.10 36.98 
4 1 1 2 0.90 0.53 1.43 
5 7 5 12 6.66 5.13 11.79 
6 0 0 0 0.34 0.20 0.54 
7 3 2 5 2.810 2.16 4.97 
8 0 0 0 0.160 0.09 0.25 
9 1 1 2 1.350 1.04 2.39 

10 2 2 4 1.820 1.38 3.20 
       

-loglikelihood =1897.50 
 
χ2 = 1.31 
 

ZISAREGp̂ = 0.8456,  ϖ̂ = 0.1410,  5249.0ˆ
0 −=ZISAREGβ  

2710.0ˆ
 1 −=ZISAREGβ  

  
Mean = 0.06 
Variance =0.1782 
 
B. Parameter Estimation 
In this study, maximum likelihood estimation method  is 

used in estimating the parameters for the newly developed 
model. This method is used because it has desirable 
mathematical and optimality properties such as , it becomes 
minimum variance unbiased estimators as the sample size 
increases and the asymtotically normal characteristic under 
certain regularity condition can be used to generate confidence 
interval  and hypothesis tests for the parameters. Simulated 
annealing[19], which is a global optimization routine is 
applied in attaining the parameters. The advantage of this 
approach is that derivatives of the likelihood function are not 
needed. To check that a global optimum is achieved, various 
seeds from the random generator RANMAR and temperature 
reduction factor are used. Convergence is evaluated at each 
step by the difference between two function values lower than 
10-6 (which is the convergence criteria). The maximum 
likelihood estimates are validated by substituting these 
estimates into the likelihood score equations. 

We obtained the parameter estimates for the two simulated 
data sets using the above-mentioned method. Table I and II 
show the fitting of the two simulated data sets and the 
estimated parameters..  

IV. RESULTS 
The results show that this newly developed zero inflated 

strict arcsine regression model provide good fit to the two 

simulated data set with small chi-square values which are  
0.44 for the first data set and 1.31 for the second data set. The 
estimated parameters obtained using maximum likelihood 
estimation method is close to the values set in simulating the 
data.  

V. CONCLUDING REMARKS 
The model is developed by considering one explainable 

variable. Only log of the mean is assumed to depend on the 
covariate. Future research may take into consideration more 
variables. The small chi-square values for the two simulated 
data sets indicate that this model can be used as an alternative 
model in modeling overdispersed count data where the extra 
variability are caused by extra zeros and explainable variables. 
The estimated parameters also show that the estimating 
method used in estimating the parameters for ZISA regression 
model is valid.  
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