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 
Abstract—In this paper zero-dissipative explicit Runge-Kutta 

method is derived for solving second-order ordinary differential 
equations with periodical solutions. The phase-lag and dissipation 
properties for Runge-Kutta (RK) method are also discussed. The new 
method has algebraic order three with dissipation of order infinity. 
The numerical results for the new method are compared with existing 
method when solving the second-order differential equations with 
periodic solutions using constant step size. 

 
Keywords—Dissipation, Oscillatory solutions, Phase-lag, Runge-

Kutta methods. 

I. INTRODUCTION 

N this paper, we are focused on initial value problems (IVP) 
related to second-order ODEs of the form: 

 
ሻݔᇱᇱሺݕ ൌ ݂ሺݔ, ,ሻݕ ଴ሻݔሺݕ ൌ ,଴ݕ ଴ሻݔᇱሺݕ ൌ ଴ݕ

ᇱ ,ሾܽ ߳ ݔ  ܾሿ    (1) 
 

where 
ሻݔሺݕ ൌ ሾݕଵሺݔሻ, ,ሻݔଶሺݕ … ,  ሻሿ்ݔ௦ሺݕ

 
݂ሺݔ, ሻݕ ൌ ሾ ଵ݂ሺݔ, ,ሻݕ ଶ݂ሺݔ, ,ሻݕ … , ௦݂ሺݔ,  ሻሿ்ݕ

 
and ݕ଴ is a given vector of initial condition and their solution 
is oscillating. There are many procedures in order to develop 
efficient methods for the numerical solution (1) such as phase 
fitting, P-stability, and methods with minimal phase-lag. The 
results of these procedures are multistep methods (two-step or 
four-step) and hybrid multistep methods) (see [1]–[11]). From 
the above remark it is obvious that there is no efficient one-
step method for the numerical solution (1). This is important 
since for the numerical solution of any problem using an one-
step method, only the initial condition is required, while for 
the numerical solution of the same problem using a multistep 
method many initial conditions can be required. The first of 
them is the condition given by the problem. The rest are 
conditions that can produce errors that are much greater than 
the error of the numerical method. For this reason, it is 
important to investigate the production of efficient one-step 
methods and especially the well-known Runge-Kutta methods. 

The term phase-lag was first introduced by Brusa and Nigro 
[12]. For the past three decades, several authors have 
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developed RK or Runge-Kutta-Nystrom (RKN) methods 
based on the minimal phase-lag theory. See Van der Houwen 
and Sommeijer [13], Senu et al. [14], and Van de Vyver [15]. 
Simos [16] derived a Runge-Kutta-Fehlberg method based on 
the idea of phase-lag of order infinity. 

In this paper, we will derive a new explicit RK method with 
three-stage third-order with dissipation of order infinity. In the 
next sections, we will discuss some basic theory of Runge-
Kutta methods. Then, the construction of the new 
amplification-fitted Runge-Kutta method is described and its 
coefficients are displayed in the Butcher table. Finally, 
numerical tests are performed on first-order differential 
equation problems which are known have oscillatory 
solutions.  

II. GENERAL THEORY 

RK methods for the numerical integration of the Initial 
Value Problem (IVP) is given by 

 
௡ାଵݕ ൌ ௡ݕ ൅ ݄ ∑ ܾ௜ ௜݂

௦
௜ୀଵ               (2) 

 
where 

ଵ݂ ൌ ݂ሺݔ௡,  ௡ሻݕ

௜݂ ൌ ݂ ቌݔ௡ ൅ ܿ௜݄ , ௡ݕ ൅ ݄ ෍ ܽ௜௝ ௝݂

௜ିଵ

௝ୀଵ

ቍ , 

݅ ൌ 1 , … ,  ݏ
 
The parameters aij, bi and ci are assumed to be real and 

jithen ܽ௜,௝ ൌ 0. m is the number of stages of the method. All 
the parameter can be tabulate in Butcher Tableau (see Table I) 
in the following form: 

 
TABLE I 

BUTCHER TABLEAU  
C  A 
 ்ܾ 

 
where 

ܥ ൌ ሾܿଵ, ܿଶ, … , ܿ௠ሿ், ܣ ൌ ൣܽ௜,௝ ൧, ்ܾ ൌ ሾܾଵ, ܾଶ, … , ܾ௠ሿ். 
 

Consider the standard test problem of differential equation  
 

ᇱݕ  ൌ ݂ሺݔ, ሻݕ ൌ ௡ሻݔሺݕ   and   ,ݕߣ ൌ  ௡          (3)ݕ
 

which has true solution 
 

ሻݔሺݕ ൌ  .௡݁ఒሺ௫ି௫೙ሻݕ
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Applying (3) to the RK formula (2), by setting ݒ ൌ  and ݄ߣ
factoring, we obtain 

 
௡ାଵݕ ൌ ሼ1 ൅ ܫ௜ሺܾݒ െ  ௡.                          (4)ݕሻିଵሽܣݒ

 
௡ାଵݕ ൌ ܴሺݒሻݕ௡,          where |ܴሺݒሻ| ൏ 1,        (5) 

 
and ܴሺݒሻ ൌ 1 ൅ ܫ௜ሺܾݒ െ  ሻିଵ is said to be stability polynomialܣݒ
of RK method.  

Definition 1: The quantities of the stability equation in (5) 
corresponding to RK methods (2) 

 

                  ߶ሺݒሻ ൌ ݒ െ arctan ቀݒ
஻೘ሺ௩మሻ

஺೘ሺ௩మሻ
ቁ,                     (6) 

 

ሻݒሺߙ                           ൌ 1 െ ඥܣ௠
ଶ ሺݒଶሻ ൅ ௠ܤଶݒ

ଶ ሺݒଶሻ     (7) 
 

are called the dispersion (or phase lag or phase error) and the 
amplification error respectively. If ߶ሺݒሻ ൌ ܱሺݒ௤ାଵሻ and ߙሺݒሻ ൌ
ܱሺݒ௥ାଵሻ then the method is said to be dispersive of order ݍ and 
dissipative of order ݎ. 

Function ܴሺݒሻ can be written as  
 

       ܴሺݒሻ ൌ ଶሻݒ௠ሺܣ ൅ , ଶሻݒ௠ሺܤݒ݅ ݒ ൌ  (8)                ݄ߣ
 
where 

ሻݖ௠ሺܣ ൌ 1 െ ݖଶߚ ൅ ଶݖସߚ ൅  ,ڮ
 

ሻݖ௠ሺܤ ൌ 1 െ ݖଷߚ ൅ ଶݖହߚ ൅     ,ڮ
         

for ݆ ൐ ݉ , ௝ߚ ൌ 0 and ݖ ൌ  .ଶݒ

III. CONSTRUCTION OF THE NEW METHOD 

In this section, we will derive a three-stage third order 
explicit RK method with phase-lag of order infinity. The 
derivation of the new RK method is based on the method 
derived as in [17] as given in Table II. 

 
TABLE II 

BUTCHER TABLEAU FOR THIRD-ORDER RK METHOD 
0 0   
1
2

 
1
2

 
 

  
 

3
4

 
0 3

4
 

0 

    
 2

9
 

1
3

 
4
9

 

 

Consider the stability polynomial in (5) for three-stage RK 
method, from the coefficients above then we have 

 

ଷܣ ൌ 1 ൅ ቀെ ଵ

ଶ
െ ସ

ଽ
ܽଷଵቁ ଷܤ ଶ andݒ ൌ 1 െ ଵ

଺
 .ଶ respectivelyݒ

 
As it has already been defined, in order to have 

amplification error of order infinity, (7) must hold. That is 
 

1 െ ඥܣ௠
ଶ ሺݒଶሻ ൅ ௠ܤଶݒ

ଶ ሺݒଶሻ ൌ 0. 
 

By applying ܣଷሺݒଶሻ and ܤଷሺݒଶሻ to the above formula, 
letting ܽଷଵ as free parameter and solving for ܽଷଵ, then we get  

 

ܽଷଵ ൌ
െ3ሺ3ݒଶ െ 6 ൅ ସݒ12√ െ ଶݒ36 ൅ 36 െ ଺ሻݒ

ଶݒ8 . 

 
The expansion Taylor series for ܽଷଵ, which is given from 

the above formula is 
 

ܽଷଵ ൌ െ
3

32
ଶݒ െ

1
64

ସݒ െ
3

512
଺ݒ െ

7
3072

଼ݒ െ
31

36864
ଵ଴ݒ െ

7
24576

ଵଶݒ ൅ ܱሺݒଵସሻ 
 
The free parameter ܽଷଵ is chosen in since it gives the 

smallest maximum global error than the other coefficients. 
This new method is denoted as RK3(D). 

IV. PROBLEMS TESTED AND NUMERICAL RESULTS 

In this section, we will apply the new method to some 
differential equation problems. The following explicit RK 
methods are selected for the numerical comparisons: 
 RK3(D): The new derived third order RK method with 

dissipation of order infinity. 
 RK3: The three stage third order RK method derived in 

[17]. 
Problem 1 [13]:  

 

ᇱᇱݕ ൌ െ64ݕ, ሺ0ሻݕ ൌ 1, ᇱሺ0ሻݕ ൌ െ2. 
 

Theoretical solution: 
 

ሻݔሺݕ ൌ െ
ଵ

ସ
sinሺ8ݔሻ ൅ cos ሺ8ݔሻ. 

 
reduce to first order system: 

 
ଵԢݕ ൌ ,ଶݕ ଶԢݕ ൌ െ64ݕଵ. 

 
Problem 2 [14]: 
 

"ଵݕ ൌ െݕଵ ൅ 0.001 cosሺݔሻ , ଵሺ0ሻݕ ൌ 1, ଵݕ
ᇱሺ0ሻ ൌ 0 

"ଶݕ ൌ െݕଶ ൅ 0.001sinሺݔሻ, ଶሺ0ሻݕ ൌ 0, ଶሺ0ሻݕ ൌ 0.9995. 
 
Theoretical solutions: 
 

ሻݔଵሺݕ ൌ cosሺݔሻ ൅  ሻݔsinሺݔ0.0005
ሻݔଶሺݕ ൌ sinሺݔሻ െ  .ሻݔcosሺݔ0.0005

 
reduce to first order system : 
 

ଵݕ
ᇱ ൌ ,ଶݕ ଶݕ

ᇱ ൌ െݕଵ
ᇱ ൅ 0.001 cosሺݔሻ 

ଷݕ
ᇱ ൌ ,ସݕ ସݕ

ᇱ ൌ െݕଷ
ᇱ ൅ 0.001 sinሺݔሻ. 
 

Problem 3 [18]: 
 

ᇱᇱݕ ൌ െ100ݕ ൅ 99sin ሺݔሻ, ଴ሻݔሺݕ ൌ 1, ଴ሻݔᇱሺݕ ൌ 11. 
 
Theoretical solution: 
 

ሻݔሺݕ ൌ cosሺ10ݔሻ ൅ sinሺ10ݔሻ ൅ sin ሺݔሻ. 
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reduce to first order system: 
 

ଵԢݕ ൌ ,ଶݕ ଶݕ
ᇱ ൌ െ100ݕଵ ൅ 99sin ሺݔሻ. 

 
From Tables III-V and Figs. 1 – 6, we can see that the 

RK3(D) method is always more accurate than the RK3 
method.  

 
 

TABLE III 
COMPARISON MAXIMUM GLOBAL ERROR FOR RK3 AND RK3(D) FOR 

PROBLEM 1 

h Methods End of Integration, b 

  100 1000 10000 

0.003125 RK3 4.28976(-3) 4.28343(-2) 4.18466(-1) 

 RK3(D) 2.14157(-5) 2.14380(-4) 2.14243(-3) 

0.00625 RK3 3.42521(-2) 3.36504(-1) 2.81000(0) 

 RK3(D) 3.42945(-4) 3.43943(-3) 3.44147(-2) 

0.0125 RK3 2.69993(-1) 2.33820(0) 7.95937(0) 

 RK3(D) 5.50679(-3) 5.52000(-2) 5.52251(-1) 

0.025 RK3 1.93021(0) 7.70556(0) 8.24623(0) 

 RK3(D) 8.91646(-2) 8.95096(-1) 8.53005(0) 

0.05 RK3 7.38859(0) 8.25482(0) 8.25482(0) 

 RK3(D) 1.50012(0) 1.31448(+1) 1.64920(1) 

 
TABLE IV 

COMPARISON MAXIMUM GLOBAL ERROR FOR RK3 AND RK3(D) FOR 

PROBLEM 2 

h Methods End of Integration, b 

  100 1000 10000 

0.003125 RK3 1.25751(-7) 1.30715(-6) 3.39464(-5) 

 RK3(D) 7.21325(-11) 5.78939(-9) 1.00255(-6) 

0.00625 RK3 1.00603(-6) 1.04649(-5) 2.73954(-4) 

 RK3(D) 1.34269(-9) 1.53219(-8) 1.48067(-6) 

0.0125 RK3 8.04855(-6) 8.37148(-5) 2.18995(-3) 

 RK3(D) 2.05362(-8) 2.05006(-7) 5.31261(-6) 

0.025 RK3 6.43903(-5) 6.69522(-4) 1.74834(-2) 

 RK3(D) 3.23682(-7) 3.28764(-6) 8.41126(-5) 

0.05 RK3 5.15065(-4) 5.34389(-3) 1.37612(-1) 

 RK3(D) 5.16788(-6) 5.31213(-5) 1.37786(-3) 

 
TABLE V 

COMPARISON MAXIMUM GLOBAL ERROR FOR RK3 AND RK3(D) FOR 

PROBLEM 3 

h Methods End of Integration, b 

  100 1000 10000 

0.003125 RK3 1.79381(-2) 1.78660(-1) 1.68858(0) 

 RK3(D) 1.13384(-4) 1.12408(-3) 1.12327(-2) 

0.00625 RK3 1.42852(-1) 1.36760(0) 9.03167(0) 

 RK3(D) 1.80905(-3) 1.80139(-2) 1.80205(-1) 

0.0125 RK3 1.10279(0) 7.881169(0) 1.41391(1) 

 RK3(D) 2.899448(-2) 2.897061(-1) 2.89349(0) 

0.025 RK3 6.77466(0) 1.41350(+1) 1.41426(1) 

 RK3(D) 4.73271(-1) 4.72114(0) 2.82838(1) 

0.05 RK3 1.41931(+1) 1.41931(+1) 1.41931(1) 

 RK3(D) 8.19326(0) 2.82805(+1) 2.82805(1) 

 

Fig. 1 Comparison for RK3 and RK3(D) methods for Problem 1 with 
b=100 

 

 

Fig. 2 Comparison for RK3 and RK3(D) methods for Problem 1 with 
b=1000 

 

 

Fig. 3 Comparison for RK3 and RK3(D) methods for Problem 2 with 
b=100 
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Fig. 4 Comparison for RK3 and RK3(D) methods for Problem 2 with 
b=1000 

 

 

Fig. 5 Comparison for RK3 and RK3(D) methods for Problem 3 with 
b=100 

 

 

Fig. 6 Comparison for RK3 and RK3(D) methods for Problem 3 with 
b=1000 

 

V. CONCLUSION 

In this paper, we have derived a new third order zero-
dissipative RK method. The new method is based on 
Dormand’s third algebraic order RK method. Numerical 
results show that the new method is more accurate for solving 
second-order differential equations with oscillating solutions. 
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