
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3463

Abstract—- In this paper we describe our efforts to design and

implement an agent development framework that has the potential to

scale to the size of any underlying network suitable for various E-

Commerce activities. The main novelty in our framework is it’s

capability to allow the development of sophisticated, secured agents

which are simple enough to be practical.

We have adopted FIPA agent platform reference Model as

backbone for implementation along with XML for agent

Communication and Java Cryptographic Extension and architecture

to realize the security of communication information between agents.

The advantage of our architecture is its support of agents

development in different languages and Communicating with each

other using a more open standard i.e. XML

Keywords— Agent, Agent Development Framework, Agent

Coordination, Security

I. INTRODUCTION

GENTS can understand user’s goals and carry out actions

autonomously to fulfill those goals [1,2] Mobile agents

are programs that can migrate from host to host in a network,

at times and to places of their own choosing. The mobile agent

concept grows out of three earlier technologies: process

migration, remote evaluation, and mobile objects—all

developed to improve on remote procedure calling (RPC) for

distributed programming [6]. Agents are an effective choice

for the development of applications in distributed systems,

for several reasons, including improvements in latency and

bandwidth of client-server applications and reducing

vulnerability to network disconnection. Although not all

applications will need mobile agents, many other applications

will find mobile agents the most effective, basically mobile

agents find their utilities in three different domains. One is

data-intensive applications where the data is remotely located,

is owned by remote service provider, and the user has

specialized needs. Here the user sends an agent to the server

storing the data. The second domain is where agents are

launched by an appliance and third is for extensible servers,

Rinkaj Goyal is Lecturer in University School of Information Technology,

GGS Indraprastha University, Kashmere Gate Delhi -6(phone: +91-

9818357163; fax: 91-011-23865941; e-mail: rinkajgoyal@ yahoo.com).

Dr..Pravin Chandra is Reader in University School of Information

Technology, GGS Indraprastha University, Kashmere Gate Delhi -6 (e-mail:

pchandra@ipu.edu).

Prof.(Dr.) Yogesh Singh is Professor and Dean of University School of

Information Technology,GGS Indraprastha University,KashmereGateDelhi -6,

(e-mail: ys@ipu.edu).

where a user can ship and install an agent representing him

more permanently on a remote server[4].

Research Institutes as well as companies develop high –

quality prototype systems for mobile systems. a brief

summary is given in Table no1 yet, these systems typically

satisfy not all requirement of mobile agents for a full

environment [3]. As given in the table few frameworks

support Knowledge query and manipulation language

(KQML) based agent communication, in KQML the major

drawback is a lack of standardization in the actual transport of

messages [16]. In addition, the semantics of the language have

not been rigorously defined, which can lead to interoperability

issues. Further, as the semantic web emerges, it is likely that

web based agents will communicate with each other using a

more open standard. In few frameworks i.e. open Agent

Architecture [3], sometimes facilitator itself becomes a

communication bottleneck, or a critical point of failure.

TABLE I

COMPARATIVE STUDY OF VARIOUS EXISTING FRAMEWORK

This paper describes a framework in which various agents

can be developed and deployed further an agent hierarchy can

be maintained to facilitate an agent to accomplish its goal.

The rest of paper is organized as follows: Section 2

introduces the key issues in the selection of implementation

language .Section 3 describes the architecture of Framework.

Section 4 demonstrates the development of various agents

.Section 5 implements the agent hierarchy and Appendix

describes that how the new agents can be developed on this

framework. Finally we make conclusions of Developed

System

XML based Safe and Scalable Multi-Agent

Development Framework

Rinkaj Goyal, Pravin Chandra, Yogesh Singh

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3464

II. SELECTION OF IMPLEMENTATION LANGUAGE

Java along with Java Cryptographic Architecture and

Extension is a natural choice for the development of safe

framework because of its Multiplatform support, write once,

run-anywhere policy and the ubiquity of the Java virtual

machine may someday facilitate dissemination of mobile

agents throughout the Internet.

It is the language of choice for many multi-agent systems

i.e. Concordia, Odyssey, and Voyager, [14, 15].

The JCE framework in the Java 2 SDK, v 1.4 and in JCE

1.2.2) includes an ability to enforce restrictions regarding the

cryptographic algorithms and maximum cryptographic

strengths available to applications in different jurisdiction

contexts (locations) The Java Cryptography Architecture

(JCA) provides extensible architecture to manage keys. This

architecture is embodied in java security as a KeyStore. The

Java KeyStore follows the existing JCA architecture which

provides a framework and implementations for a KeyStore

To construct a safe infrastructure public and private key

pairs is required. These unique key pair combinations provide

the facility to sign and encrypt data in an authenticated,

verifiable, and secure fashion. Public keys are typically stored

in certificate objects, rather than alone. Sender and receiver

may deal with many certificates and may have more than one

private key that they use to sign and encrypt or decrypt data.

We reveal an important vault of information in Java security,

the KeyStore, which allows agents to consolidate and manage

their various certificates and keys.

A KeyStore is a database of private keys and their

associated certificates or certificate chains. The certificate

chains aid in authenticating end entity certificates

III. ARCHITECTURE OF DEVELOPMENT FRAMEWORK

 After investigating and analyzing the various implemented

Agent Systems [5, 14, 15], it has definitely assisted in

understanding the requirements of a Framework. Our

framework differs from the other systems due to the following

reasons:

1. Heterogeneity of the various agents is acceptable. Which

means that the agents can be developed in any language

provided; there operation is portable with the JAVA

programming language?

2.The agents thus developed are hybrid in nature thus they

have both compiled as well as interpreted codes executing on

the various platforms as well as the JVM.

3. Though the Core modules have been developed in Java

but the messaging architecture is socket based, thus all other

programming language having socket-based communication

can easily form a part of the environment.

4. Agent Hierarchy can be deployed using special XML

based Agent property files.

The basic architecture is given in Fig 1. And its integral

components are explained in the following sub-sections

Fig. 1 Generic Development Platform Overview

A. Platform design

It provides the basic architecture for messaging between the

various agents. Its registry feature predominantly helps the

agent location and tracking process. It consists of the

following components.

Global Server: The Global Server is responsible for the

following actions.

• It registers all the active agents in a global agent registry.

• It shares the registry information with all the other active

middleware’s for easy routing of messages.

The global registry keeps track of the identification and

current location of the agents. The registry stores the agent

Id’s and the Location Details of the various agents.

Agents: The agents, who execute on the client side comes

under this category. These agents are to design in a Prescribed

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3465

Format so that they can be easily loaded into the runtime

environment.

Clients: The user interfaces connected to the runtime

platform as well as the various other agents comes under this

category.

Messaging Middleware: This forms the core of the inter

agent Communication between the various agents. The

messaging middleware is Responsible for the routing of the

messages across the various client nodes in the Generic

Platform network.

B. Client

Client is also called the active distributed component of the

system. It provides all the messaging support (through Client

Middleware or messaging Middleware). The major

components of the client are -:

• Messaging Middleware

• Local Agent Registry

• Communication engine

• Agents

Local agent registry: Registry forms the backbone of the

agent information service by providing and maintaining the

details of the location of all the active agents. It has the

following components

1. Agent name: A unique name that identifies each agent.

2. Physical address: The network address where the agent is

located.

Messaging Scheme: The message has following

components

1. Agent Name: Unique name / number identifying agent.

2. Message ID: Unique number identifying the message.

3. Message Type: The type of message that is being send.

4. Message Contents: The contents of message transmitted.

C. Agent Communication

In development framework communication plays an

important role for agent co-ordination. The agents use the

Message Class to create message objects. The message Class

has the constructor Message (String source, String dest, String

message, int id, int type) to pass the Message source address,

the recipient address, the message content and agent id and

type. All the communication is socket based and the message

transfer and coordination is controlled by the use of Message

queue by the messaging middleware.

The message objects are passed over the TCP/IP sockets,

using the Object Serializabilty and in the encrypted form.

The receipt of the message by the various agents is an

important event in the context of messaging co-ordination and

selective reception. We propose our own customized

“message event” handling for reception of messages for the

agents. The proposed model is explained as under:

• All the agents register to the message event class to

accept any message event, whenever it occurs.

• Whenever a message is received by the middleware a

message event is pushed into the java event queue, our

customized message event handler handles this event.

• The agent message listener interface provides for a

function called

 void messageReceived (AgentMessageEvent) which has

to be implemented by all the registered message listeners to

perform suitable action after the receipt of the message.

D .Encryption Algorithm Design in Agent Communication

 To realize the Security of communication information,

public-key encryption is used to encrypt the communication

information [10, 12]. Developed agents will be interacting

with security policy agents. Public –Private key pair will be

generated by Java Cryptographic Architecture and extension

API’s . Fig 2 and 3 illustrate the preparatory steps

IV. VARIOUS AGENTS DEVELOPED

Indexing agent: The indexing agent facilities the work of

search and file agent by providing a ready index of files that

can be searched. The search gets speeded up as already index

of files is there. it prepares an index of files that user wishes

to share on network and Provides support for the faster search

for Search Agent.

Search agent: Search Agent uses the results provided by

Indexing Agent thus showing the hierarchal approach of the

Generic Deployment Framework architecture developed. it

Initiate a search on the network through the messaging

service provided by Framework for search initiation,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3466

monitoring and result acquisition. It Helps the File Agent to

know whereabouts of a required file. Functioning is illustrated

in Fig. 4

Fig. 4 Search Agent

File agent: File Agent is build over the hierarchy of agents

and uses the functionality provided by the agents over which it

is build. It Uses search agent to retrieve the list of files

available on the network and

Allows the user to get files interactively by using the

messaging scheme of Framework architecture to initiate a peer

connection for the file transfer. Functioning is illustrated in

Fig 5

Fig. 5 File Agent

A. Agent Hierarchy

Agents can build over a hierarchal model where agents

depend over other agents for the functionality. The

information of the dependency is stored in an XML document

as an example XML below shows. XML can also contain

optional agents.

 A tree depicting the hierarchy of the dependency of the

agents is build whenever an agent is run. The loader builds a

tree according to which the agents are loaded and this allows

an agent, which is on the top of hierarchy to use the services

provided by other agents for performing its activities.

V. CONCLUSION

Our Framework differs from many of the available agent

framework because of its simplicity and small size. This

system is inspired by Aglet, Odyssey, Concordia [14] [15] and

JATLite and support FIPA standards. Customized Messaging

Scheme and XML based architecture helps in agent

communication as well as coordination. the custom agents like

file search and transfer agents have been developed and

Appendix has been provided for the users who wish to design

their own custom agents. As with other agent development

models, this model also has scope of future extension like the

inclusion of better failure management, management of

network congestion etc .

APPENDIX: CREATION OF NEW AGENTS

A. Steps to Build a Sample Agent

Agent’s name plays an important role in the developed

framework as the agent platform loads the agent by its name.

Also name of the agent is sent in the message. So, it is

necessary to stick to a particular name for an agent all the

time. All agents are assumed to be in a package

SCADE.agent. This allows us a consistent packaging scheme

which allows us an easier way to manage java docs.

1. Create a public class by name HelloAgent that is the core

of the hello agent class. Inherit all the features from the

SCADE.bin.agents.Agent class (This class provides basic

agent functionalities). Also, the agent class implements the

AgentMessageListener and Runnable interface which makes

agent threaded and also capable to use existing platform to

listen to messages. packages java.lang.reflect,

SCADE.bin.messaging packages need to be imported

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3467

The sample code to create class is

package SCADE.agent.helloagent;

import SCADE.bin.messaging.*;

import SCADE.bin.gui.*;

public class HelloAgent extends SCADE.bin.agents.Agent

implements SCADE.bin.messaging.AgentMessageListener,

Runnable {

…….

…… }

2. Implement the methods provided by the interfaces

public class HelloAgent extends SCADE.bin.agents.Agent

implements SCADE.bin.messaging.AgentMessageListener,

Runnable{

 public void messageReceived (AgentMessageEvent

evt) {

 …..…..

 }

 public void run () {

 …. }

}

3. Select a unique agent Id for your agent that has not been

used. Open the SCADE\bin\agents\Agent.java file and check

for the last used agent Id. Add a new id for your agent as...

public static final int HELLO_AGENT = 7 ;(supposing last

used id was 6)

In the message received function a core of three types of

messages need to be handled. (Other types of messages are

handled if your require them).

For new message add the message type to the interface

SCADE\bin\messaging\MessageType.java. Add a integer

message id which is not previously used.

public static final int MESSAGE_HELLO_AGENT = 22

;(considering last message id was 21).

Following Messages need to be handled in Message

received function

1. AGENT_GUI_INITIATE: This message corresponds to

the event that the user has used the GUI to start the agent.

2. INITIATE_TASK: This corresponds to message from

another system to initiate an agent.

3. TASK_RESULT: This corresponds to message that

result is send to the agent.

Whenever the GUI will initiate the agent it will send a

AGENT_GUI_MESSAGE to the agent at its system.

Considering, our helloagent will be using

AGENT_GUI_INITIATE and INITIATE_TASK messages. If

the system GUI initiates the helloagent then it broadcasts

message to all the systems it knows.

// code to check Message type and Agent ID of the message

send from the message.

Message m = evt.getMessage ();

// m is message object retrieved from AgentMessageEvent

Object evt

if (m.getDestAgentId == super.getAgentId &&

m.getMessageType ==

MessageType.AGENT_GUI_INITIATE) {

// broadcasts message to all the systems

// create a new message

Message m1 = new Message (“source address”,

“destination address”, null, super.getAgentId,

MessageType.AGENT_MIDDLEWARE_BROADCAST,

super.getAgentId);

// source address (system ip address as string that sends

message)

// destination address (for broadcasts set dest address to

source address as it gets replaced)

// message payload (here null)

// source agent id (id of the sending agent)

//Message type (Broadcast message)

//destination agent id (id of destined agents)

super.sendMessage (m1);

//sends the message to middleware

}

//Handling of INITIATE_TASK message

Else if (m.getDestAgentId == super.getAgentId &&

m.getMessageType == MessageType.INITIATE_TASK) {

// code to write hello

SCADE.bin.gui.mdgui.jTextArea1.append (“Hello from” +

m.getSourceAddress);

// A text area jTextArea1 provided to all the agents for

appending there data

}

//In the run method send a message to the system to initiate

agent and message type AGENT_GUI_INITIATE

public void run () {

Message m1 = new Message (“source address”, “dest

address”, “helloagent”, super.getAgentId,

MessageType.AGENT_GUI_INITIATE, super.getAgentId);

super.sendMessage (m1);

}

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3468

REFERENCES

[1] Foner L., What is an agent anyway? : A Sociological Case Study, MIT

Media Lab, Cambridge, MA, 1993

[2] Russel Stuart & Norvig Peter, Artificial Intelligence: A Modern

Approach, Prentice Hall, 1995

[3] Alter Brenner, Rudiger Zarnekow and Hartmut Wittig “Intelligent

Software Agents: Foundation and Applications” Springer 1998

[4] Caglayan Alper & Harrison Colin “Agent a Sourcebook: A Complete

Guide to Desktop, Internet, and Intranet Agents”. John Wiley & Sons,

Inc. 1998

[5] Tecuci Gheorghe “Building Intelligent Agents: An Apprenticeship

Multi strategy Learning Theory, Methodology, Tool and Case Studies.”

Academic Press. 1998

[6] David Wong, N. P., Dana Moore "Java-Based Mobile Agents."

Communication Of The ACM March 1999/Vol. 42 No. 3.

[7] Chunsheng Li, Chengqi Zhang, "MA-IDS Architecture for Distributed

Intrusion Detection using Mobile Agent." Proceedings of the Second

international conference on Information Technology for application

(ICITA) 2004.

[8] Haetmut Vogler, T. K., Marie-Louise Moschgath "An Approach for

mobile Agent Security and Fault Tolerance using Distributed

Transactions." IEEE. Transaction 1997

[9] Dragana Cvetkovie, Milja Pesic, Dejan Petkovie, Veljko Milutinovie,

Petar kocovie and Vlada Kovacevie "Architecture of the Mobile

Environment for Intelligent Genetic Search and Proxy Caching." IEEE.

Transaction 2002

[10] Qiang XUE,Jizhou SUN,Zunce WEI ” TJIDS: an intrusion Detection

Architecture for dikstributed Network” IEEE Transaction 2003

[11] Shad-chun Zhong, Qing-Feng Song, Xiao-Chun chang ,Yan Zhang ” A

safe Mobile Agent system For distributed Intrusion and Detection” IEEE

Transaction 2003

[12] Guy G. Helmer, J. S. K. W., Vasant Honavar, Les Miller, Yanxin Wang

"Lightweight Agent for Intrusion Detection." The journal of Systems

and software 2002

[13] Timon c.du,Eldon Y.Li,An-Pin chang “ Mobile Agents in Distributed

Network Management” Communications of the ACM july 2003/Vol 46

No 7.

[14] Odyssey white paper. General Magic Corp., Cupertino, Calif., 1998.

Voyager white paper. ObjectSpace Corp., Dallas, Tex., 1998.

[15] Deepika Chauhan, JAFMAS: A Java-based Agent Framework for Multi

agent Systems Development and Implementation, ECECS Department,

University of Cincinnati, 1997

[16] Finin T, Peng Y and Labrou Y. (1999) Agent Communication

Languages: The current Landscape. IEEE Intelligent Systems,

March/April 1999, pages 45-52.

