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X-Corner Detection for Camera Calibration Using
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Abstract—This paper discusses a corner detection algorithm
for camera calibration. Calibration is a necessary step in many
computer vision and image processing applications. Robust
corner detection for an image of a checkerboard is required
to determine intrinsic and extrinsic parameters. In this paper,
an algorithm for fully automatic and robust X-corner detection
is presented. Checkerboard corner points are automatically
found in each image without user interaction or any prior
information regarding the number of rows or columns. The
approach represents each X-corner with a quadratic fitting
function. Using the fact that the X-corners are saddle points,
the coefficients in the fitting function are used to identify each
corner location. The automation of this process greatly simplifies
calibration. Our method is robust against noise and different
camera orientations. Experimental analysis shows the accuracy
of our method using actual images acquired at different camera
locations and orientations.

Keywords—Camera Calibration, Corner Detector, Saddle
Points, X-Corners.

I. INTRODUCTION

CAMERA calibration has attained greater attention

recently due to the increase of surveillance, security

and gaming applications in the last decade. The focal length,

lens quality and positioning of the camera are factors that

must be known for these applications. To obtain these factors

accurately, the intrinsic and extrinsic camera parameters must

be determined. Intrinsic parameters describe the camera’s

focal length, along with any distortion it creates in imagery.

Extrinsic parameters describe the camera’s location and

orientation with respect to an outside, or ”world”, coordinate

system. In systems with multiple cameras, these parameters

are necessary to determine spatial relationships between

the cameras. Camera calibration can be roughly classified

into two groups. Photogrammetric calibration uses images

collected from targets with precisely known spatial features.

Self calibration, on the other hand, uses images of the

same static scene, and develops correspondences between

the images to perform the calibration. This work examines

a photogrammetric method, which is a well-developed and

reliable method for estimating camera intrinsic parameters.

Researchers have used many patterns (calibration targets) for

camera calibration. Fig. 1 shows three different patterns.
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Fig. 1 (a) Cross lines (b) Circles (c) Checkerboard Patterns

The seminal work by Tsai [1] has influenced researchers

to adopt a checkerboard target for calibration. The corners

of the checkerboard can be precisely located with a variety

of semi-automated procedures, because the white and black

boxes result in strong corner features. Typically, the first step

of a calibration procedure is to capture a set of images of the

checkerboard at different positions relative to the camera. For

each image in this set, the corner point locations are identified,

and these are then used to determine the intrinsic and extrinsic

parameters of the camera with numerical techniques.

The identification of corners in checkerboard images is

of prime importance, because the quality of the camera

calibration is sensitive to the accuracy of the corners. There

are many approaches to using the corner points (or other

features for other types of targets) for determining intrinsic

and extrinsic parameters of the camera. For example, the

plumb line method is used to account for the lens distortion

that is a function of target position in the field of view.

In [2], a novel model for calibration based on generalized

projective mappings is presented. Two calibration planes in

3D are projected onto the image plane. Calibration approaches

can be generally organized according to those that use direct

nonlinear minimization, closed-form solutions, or two-step

methods [3]. Direct nonlinear minimization involves the

iterative computation of parameters, using equations that relate

the corner point locations in space to the parameters. This

approach is useful for characterizing many types of distortion.

The closed-form approach is simpler since it does not require

iteration, and the parameters are directly computed from the

corner point positions. However, the closed-form approach

does not model image distortion. The two-step approach

computes most of the parameters in a closed-form fashion,

and the remaining parameters are found with iterations. This

allows one type of common distortion, radial distortion, to be

modeled.

There are many techniques for performing calibration, but

there is less research conducted on the necessary extraction of

corner points from planar checkerboard imagery. This is often
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performed manually, which ultimately is a time consuming

and labor intensive process. For this reason, it is significant to

search out a method which automatically extracts the corners

from images.

There are several methods for automatic corner detection

proposed in the literature. One approach is to find edges

of the checkerboard pattern and fit lines to them [4]. The

intersections between the fitted lines determine the corners

of the checkerboard. However, the edges in the image

are typically curved due to radial distortion, which creates

problems for this technique. A second algorithm begins by

prompting the user to identify the four outside corners in

the image, along with the number of rows and columns

in the pattern[5]. The algorithm then uses this information

to automatically identify the interior corners in the pattern.

However, the manual extraction of the four outside corners

is time consuming, since calibration requires many target

images. Zhongshi Wang [6] presented a methodology which

can automatically detect all of the corners of the checkerboard

pattern. It is based on the grid line architecture and local

intensity characteristics of the planar checkerboard image. The

approach consists of the detection of the corners on image,

recognition of corners at the intersection of two grid lines,

and the intersection of black and white squares.

Some approaches use vanishing points, which are an

important geometric image parameter and can be helpful in

calibrating cameras [7], [8]. A vanishing point exists at the

convergence of a set of lines in the image plane, and the

analysis of these lines provides information about invariant

characteristics of the 3D scene, such as object dimension and

depth.

Reference [9] presents the novel technique of finding

checkerboards in blurred images regardless of their poses with

high accuracy. The procedure involves two steps in which the

detection of the checker board in the image is done along with

the calculation of initial pixel coordinates for extracting corner

as the first step. In the second step, corners are refined to sub

pixel accuracy on the basis of Lucheese and Mitra technique

[10].

In this paper, we present a fully automatic and robust

algorithm for X-corner detection. This paper will be organized

as follows. Section II reviews the details of related work on

automatic corner detection. Section III covers the algorithm

used in this work. Section IV presents the results and

performance of this algorithm, as applied to a set of images.

Section V concludes and discusses the implications of the

results.

II. RELATED WORK

Most of the camera calibration work in the literature that

uses known geometrical targets focuses on algorithms that

estimates the parameters from key points on the targets. The

checkerboard target is used most frequently, which contain

an array of X-corners. Although detecting the X-corners

accurately is important, there is relatively little work on this

key step. There are two commonly used techniques for finding

X-corners. Bougets Matlab’s toolbox [5] is a semi-automated

X-corner detector, because it requires the user to manually

click on the four extreme corners of the pattern. There is an

OpenCV method based on Zhang’s algorithm [4] with greater

automation, although the number of rows and columns in the

checkerboard and several thresholds must be entered by the

user. The performance of the OpenCV algorithm is sensitive

to the size and number of the squares in the image.
The idea of using X-corners in checkerboard images

as points of interest was introduced by Moravec in 1977

[11]. The automated detection of these points is most often

achieved with texture-based methods, which use the local

intensity properties around the corner points. The Harris corner

detector is a commonly used texture-based filter, and it is

robust to rotation, changes in scale and image noise [12].

This detector applies an auto-correlation to small regions

of the image, comparing the regions to shifted versions of

themselves. This produces a matrix for each pixel in the

image, and the eigenvalues and eigenvectors of the matrix

provide information about the pixel. If the pixel is a corner,

both eigenvalues are large. A threshold can therefore be

used to identify corner points in the checkerboard image.

Another well developed texture-based method is the SUSAN

(Smallest Univalue Segment Assimilating Nucleus) detector,

which applies a circular mask to detect corner strength for

pixels [13]. Unlike the Harris filter, the SUSAN detector does

not use derivatives. For each mask position over the image,

it counts the number of image pixels with the same intensity

as the center pixel. Comparing this to a threshold determines

whether the center pixel is at a corner point in the image. Other

texture-based techniques for locating checkerboard corners

rely on wavelets [14], or blob detectors [15].
A second category of automated corner detection algorithms

relies on the known geometry of the corners with respect to

each other. For example, the corners occur at the intersections

of lines in the image. Geometry-based techniques have

difficulties when the image distortion is severe, causing lines

to appear curved. Often, the geometrical relationships between

corner points is used in combination with texture-based

techniques, in order to eliminate spurious points.
Corner-detection algorithms most often return corner points

as discrete pixel locations, with the same resolution as the

original image. It is possible, however, to refine the location

to sub-pixel precision by using a parametric model to represent

the local region around corners. One example of this approach

uses a Harris filter to first locate the corner pixels [16], [10].

The local image intensity around each corner point has a

saddle shape, and can be represented by a hyperbolic function.

The position of the saddle point is found by setting the

partial derivatives of the hyperbolic function to zero. This

location provides a sub-pixel approximation to the corner. Our

proposed automated X-corner detection method also uses a

second-order parametric model for the local intensity around

corners, and treats the sub-pixel corner location as a saddle

point.
A robust corner detector should satisfy the following

requirements [17]:

• All correct corners should be detected .

• False corners should be eliminated (Refine).
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• Correct corners should be precisley placed on thier true

locations (Localizations).

• Detection should be robust regardless of scale and

orientation of the pattern in the image.

• Detector should have minimum processing time (for real

time applications)

• Detector should be robust against noise.

III. SADDLE POINTS

Lines and edges are important features for many image

processing and computer vision applications. An edge in an

image corresponds to a significant local change in intensity

level. Intensity can change due to various physical shape of

the objects or because of different geometric affects (object

boundary, surface boundary and occlusion boundary). Fig. 2

shows different types of edges.

Fig. 2 Origin of Edges

Ideal edges are formed by a step function E(x) defined by

E(x) =

⎧⎪⎨
⎪⎩
1 if x > 0

1/2 if x = 0

0 if x < 0

(1)

Real edges may be obtained from ideal edges by convolving

with an imaging Point Spread Function (PSF) such as a

Gaussian. An image of a real and ideal edge are shown in

Fig. 3.

Ideal Edge

x

y

Real Edge

x

y

Fig. 3 Ideal vs real edge

The checkerboard pattern of interest in this work consists

of an array of x − shape corners, formed by the alternating

black and white squares. The model for an ideal x − shape
corner is given in Fig. 4. It can be mathematically expressed

by the function E(xy).

0

1

-1
0 1

Fig. 4 Ideal X corner

The location of the corner in the ideal x-shape forms a

natural saddle point. To illustrate this, Fig. 5 shows a model

of a checkerboard-corner intensity E(x2 − y2) , blurred with

a Gaussian to represent a realistic image. In the right of this

figure, the intensity is plotted in three-dimensions, to show

that the checkerboard corner forms a saddle point.

Checkerboard Corner

x

y

Saddle Point at Corner

xy

In
te
ns
ity

Fig. 5 Saddle point surface plot

The saddle point is located at the intersection of two lines

along the checkerboard edges. We can estimate the saddle

point location by fitting lines to the edges and finding the

intersection of the lines [18]. We could also model a local

X-corner, or saddle point, by considering two lines, given as:

l1(x, y) = a1x+ b1y + c1

l2(x, y) = a2x+ b2y + c2
(2)

The X-corner is given by the product of the lines used as the

argument of the edge function. The process is illustrated in

Fig. 6. The top left image shows, E(l1(x, y)), which could be

color-coded as red, and the top right image shows, E(l2(x, y)),
perhaps color-coded as green. The bottom left image shows

the four combinations of colors (0G,RG,R0, 00). The bottom
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Fig. 6 Formation of X-corners from two edges

right image shows the X-corner The argument of the edge

function given by the product of the lines can be reduced to

a general quadratic as shown below.

p(x, y) = l1(x, y)l2(x, y)

= k5x
2 + k4y

2 + k32xy + k2y + k1x+ k0
(3)

The corner point may be found from the inflection or saddle

point of this polynomial. The solution is obtained by setting

the derivatives in x and y equal to zero and solving the

resulting set of linear equations, or more concisely by solving

the following:

∇p(x, y) = 0

2H

(
x
y

)
+G = 0

(4)

where H =

(
k5 k3
k3 k4

)
and G =

(
k1
k2

)

If a local region surrounding a pixel is examined, the

polynomial may be interpreted as a Taylor series, G is the

gradient vector and H is the Hessian matrix. If the eigenvalues

of H are of opposite sign, the local region is a saddle point. If

the eigenvalues have the same sign the local region is elliptical

or hill-like, and if one eigenvalue is zero the local region is

a ridge line. Hills and lines may be either bright on a dark

background or dark on a bright background. X-corners may

also be described in geometric terms by defining angles θ and

φ as shown in Figure 7. The angle θ defines the orientation

of the X-corner and φ defines the width of the X-corner.

The edge lines are given by

l1(x, y) = sin(θ + φ)x− cos(θ + φ)y

l2(x, y) =− sin(θ − φ)x+ cos(θ − φ)y
(5)

Fig. 7 Geometric interpretation of X-corners

After some trigonometric manipulation the corresponding

quadratic obtained from the product of the two lines is given

by:

e(x, y) =− cos(2φ)(x2 + y2) + cos(2θ)

(x2 − y2) + sin(2θ)(2xy)
(6)

The general polynomial is given by:

p(x, y) =c5(x
2 + y2) + c4(x

2 − y2) + c3(2xy)

+ c2y + c1x+ c0
(7)

where c5 = −K cos(2φ), c4 = K cos(2θ),c3 = K sin(2θ) and

K is a general constant which can be obtained from

K =
√

((c4)2 + (c3)2)
Fig. 8 shows the effect of varying c5:|c5| < K corresponds

to a saddle-point,|c5| = K corresponds to a ridge line and

|c5| > K corresponds to an elliptical spot (hill).

Fig. 8 Effect of varying c5, keeping c3 = 1 and c4 = 0

IV. EXPERIMENTAL RESULTS

We can test the performance of the proposed algorithm

using acquired images that vary in focal length, pose, and

illumination. Fig. 9 is a test image with three checkerboard

patterns at different orientations. All of the true x-corner points

are indicated.
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Fig. 9 Test image with detected x-corners.

The Harris corner detector is applied to the same image,

and the results are indicated in Fig. 10. As implemented in

Matlab, the Harris detector requires the user to provide the

total number of X-corners, and the default value of 200 was

used. As can be seen in the figure, the Harris detector does

not find all of the true X-corners, and some spurious corners

were found.
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Fig. 10 Corner points located by the Harris detector

One particular checkerboard corner is magnified in Fig.

11, indicating that the algorithm accurately identifies the true

corner. The corner is at the intersection of two lines along the

checkerboard edges, as shown.

500 505 510 515 520 525 530

835

840

845

850

855

860

Fig. 11 One magnified x-corner with sub-pixel location. Green ’*’ indicates
corner detected using proposed method, red ’+’ indicates corner detected

using Harris detector

When one X-corner is magnified, as in Fig. 11, a common

problem with the Harris detector occurs. This problem is that

one X-corner is detected as two separate corners, formed

from opposite white squares in the checkerboard pattern. The

Harris detector operates as a general corner detector, not as an

X-corner detector. We acquired another checkerboard image

with different corner orientations. Fig. 12 shows the image

with all the true x-corner indicated.
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Fig. 12 X-corner of checkerboard at different orientations

Fig. 13 shows zoomed part of the checkerboard with all true

x-corner indicated.
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Fig. 13 Zoomed part of the checkerboard

Figs. 14, 15 indicate an array of checkerboard images

taken at different orientations, with the algorithm’s X-corners

indicated in each. The algorithm successfully detects only the

true X-corners, and does not return any spurious points.
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Fig. 14 Image of a checkerboard where X-corners are marked as ’*’
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Fig. 15 Image of a checkerboard where X-corners are marked as ’*’

V. CONCLUSIONS

This paper presented an automatic checkerboard corner

detection, which uses a quadratic model for each X-corner and

treats them as saddle points. The algorithm does not require

the user to provide any information regarding the image,

and a single threshold value can work for a wide array of

images. Results indicate that it is robust to image noise, light

levels, distance, and target orientation. The algorithm only uses

texture information, and it can be combined with geometric

properties of checkerboard patterns to easily eliminate any

spuriously detected points.
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[9] S. Placht, P. Fürsattel, E. A. Mengue, H. Hofmann, C. Schaller,
M. Balda, and E. Angelopoulou, “Rochade: Robust checkerboard
advanced detection for camera calibration,” in Computer Vision–ECCV
2014. Springer, 2014, pp. 766–779.

[10] L. Lucchese and S. K. Mitra, “Using saddle points for subpixel feature
detection in camera calibration targets,” in Circuits and Systems, 2002.
APCCAS’02. 2002 Asia-Pacific Conference on, vol. 2. IEEE, 2002, pp.
191–195.

[11] H. P. Moravec, “Towards automatic visual bbstacle avoidance,”
in International Conference on Artificial Intelligence (5th: 1977:
Massachusetts Institute of Technology), 1977.

[12] C. Schmid, R. Mohr, and C. Bauckhage, “Evaluation of interest point
detectors,” International Journal of computer vision, vol. 37, no. 2, pp.
151–172, 2000.

[13] S. M. Smith and J. M. Brady, “Susana new approach to low level image
processing,” International journal of computer vision, vol. 23, no. 1, pp.
45–78, 1997.

[14] X. Gao, F. Sattar, and R. Venkateswarlu, “Multiscale corner detection of
gray level images based on log-gabor wavelet transform,” Circuits and
Systems for Video Technology, IEEE Transactions on, vol. 17, no. 7, pp.
868–875, 2007.

[15] A. Willis and Y. Sui, “An algebraic model for fast corner detection,” in
Computer Vision, 2009 IEEE 12th International Conference on. IEEE,
2009, pp. 2296–2302.

[16] D. Chen and G. Zhang, “A new sub-pixel detector for x-corners in
camera calibration targets,” 2005.

[17] D. Parks and J.-P. Gravel, “Corner detection,” URL http://www. cim.
mcgill. ca/˜ dparks/CornerDetector/harris. ht, 2004.

[18] R. Jain, R. Kasturi, and B. G. Schunck, Machine vision. McGraw-Hill
New York, 1995, vol. 5.


