
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:10, No:1, 2016

96

 

 

 
Abstract—This paper presents the strategic development plan of 

winged rockets WIRES (WInged REusable Sounding rocket) aiming 
at unmanned suborbital winged rocket for demonstrating future fully 
reusable space transportation technologies, such as aerodynamics, 
Navigation, Guidance and Control (NGC), composite structure, 
propulsion system, and cryogenic tanks etc., by universities in 
collaboration with government and industries, as well as the past and 
current flight test results. 
 

Keywords—Autonomous guidance and control, reusable rocket, 
space transportation system, suborbital vehicle, winged rocket. 

I. INTRODUCTION 

HE strategic road map of JAXA (Japan Aerospace 
Exploration Agency) for realizing reusable space 

transportation system is presented in Fig. 1 [1]. In parallel with 
the basic technology development for about 5 years, Japan will 
create new application and business units realized by the 
reusable space transportation system, which contribute social 
activities and demands by reducing financial burden of space 
development, promoting economic growth, solving resource 
problems of energy, food, and environment, and enhancing the 
security of the Asia Pacific Oceanic region etc. After the 
technology development by research and actual flight tests 
using small test vehicles are completed by 2020, the partially 
reusable space transportation such as small satellite launcher, 
reusable unmanned and manned shuttle will be realized in 15 
years from 2020. The fully reusable space transportation 
system is expected to be operational after 2035. 

 Reference partially reusable satellite launchers planned by 
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JAXA that will be operational from 2020 are shown in Fig. 2. 
The concept A is a vertical take-off and horizontal landing 
vehicle with the initial mass of 107 tons. It is propelled by 
rocket engines using hydrocarbon fuel to accelerate up to the 
Mach number 10 and launch an expendable upper stage from 
the altitude of 70km. This vehicle flies forward and land on a 
runway located in the down-range. The expendable stage has 
the payload capability of more than 500kg to the low earth orbit 
of 500km altitude. The concept B has the same mission concept 
and stores the same expendable upper stage, but can fly back to 
the launch site using additional air breathing engines. The 
concept C is a vertical take-off and landing vehicle using rocket 
engines.  

WIRES-X (WInged REusable Sounding rocket) shown in 
Fig. 3 is a conceptual suborbital winged rocket under study by 
Kyutech. It employs the aerodynamic shape of HIMES (HIghly 
Maneuverable Experimental Space vehicle) studied by Institute 
of Space and Astronautical Science (ISAS) of JAXA in 1980s 
[2]. WIREX-X will reach the altitude more than 100km, and 
demonstrate all the key research issues such as aerodynamics, 
navigation, guidance and control (NGC), composite structure 
including health monitoring system, cryogenic composite tanks 
and advanced rocket engine of hydrocarbon fuel etc. by 2020 
(Fig. 4). WIRES-X has the total length of 9.3m, initial mass of 
4.6 tons and payload capability of 100kg. It will be propelled by 
a single LOX-Methane engine of 100kN thrust newly 
developed by IHI. 

In 2008, Kyutech first developed a very small winged rocket 
called WIRES#011 and conducted experimental flight for five 
times to demonstrate the attitude control performance of ascent 
phase [3]. In 2010, a conventional rocket called WIRES#012 
was developed to demonstrate the new flight termination and 
recovery system using two-stage parachute and airbags for the 
safety operation. Kyutech completed its experimental flights in 
2011 successfully. Since 2012, Kyutech is developing a larger 
winged rocket WIRES#014 for demonstrating on-board 
real-time guidance and attitude control system. WIRES#014 is 
the first development collaboration with JAXA, and the flight 
tests are underway. Kyutech and University of Texas at El Paso 
(UTEP) have already started to design a relative larger winged 
rocket WIRES#015 as a pre-demonstrator of suborbital vehicle 
in collaboration with JAXA, IHI, IHI Aerospace, PD 
Aerospace and other domestic companies. 
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