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Abstract—One of the major difficulties introduced with wind
power penetration is the inherent uncertainty in production originating
from uncertain wind conditions. This uncertainty impacts many
different aspects of power system operation, especially the balancing
power requirements. For this reason, in power system development
planing, it is necessary to evaluate the potential uncertainty in future
wind power generation. For this purpose, simulation models are
required, reproducing the performance of wind power forecasts.

This paper presents a wind power forecast error simulation models
which are based on the stochastic process simulation. Proposed
models capture the most important statistical parameters recognized
in wind power forecast error time series. Furthermore, two distinct
models are presented based on data availability. First model uses
wind speed measurements on potential or existing wind power plant
locations, while the seconds model uses statistical distribution of wind
speeds.

Keywords—Wind power, Uncertainty, Stochastic process, Monte
Carlo simulation.

I. INTRODUCTION

PRESENCE of renewable generation in power systems
worldwide is constantly increasing, following the

obligations taken from the Kyoto protocol. Although the
dynamics of these changes are highly dependent on ambitions
and opportunities in each country, it is hard to find any
country that did not have some experience with this type
of generation. As a continuation of consecutive aims, some
countries integrated significant levels of renewable generation,
higher than required by international obligations. However,
these countries are rare examples, combining both national
strategy and domestic industrial development in achieving such
results. Increase in renewable generation presence followed an
extreme fall in costs of renewable technology. Altogether, both
wind and PV sources exhibit favourable trends in costs, and
general acceptance and further development and increase in
their presence can be expected in the following decades.

Previously introduced trends in power system development
are not performed without difficulties. Namely, although
highly beneficial from the environment’s perspective,
renewable generation introduces several difficulties in power
system operation. In this sense, one of these specificities
presents the main focus of this work, i.e. the uncertainty in
wind power production. Power system uncertainty results
from the necessity of power production and consumption
planning—which is a typical procedure in power system
operation planning—aiming at matching generation and
consumption as close as possible. Consequently, wind
production requires planning, typically based on weather
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forecasts. Due to the inherent uncertainty in these plans, wind
power output is unreliable.

In many power system development studies it is necessary
to analyse impact of this uncertainty on different aspects of
the power system operation, for example, analysis of potential
changes in balancing power requirements with the introduction
of a new wind generation facility. In such studies, it is
necessary to simulate performance of wind power forecasts,
accounting for different factors that are influencing them.
This paper presents two simulation models, depending on
data availability, which can be further modified depending on
desired level of accuracy.

Compared to existing models proposed in relevant
publications, models presented in this work account for
several important factors and provide generality in terms of
wind power plant allocation. Majority of models proposed in
these publications consider wind power forecast error time
series and attempt to reproduce its statistical parameters.
Typical drawback in such models is a poor generality.
Namely, since the typical wind power forecasting is based
on weather models, statistical parameters depend on wind
power plant disposition and capacity. Models presented here
relay on investigations considering weather based forecasting
but compared to similar models provide simpler Monte
Carlo based wind power simulation model combined with
autoregressive wind speed forecast error model reproducing
autocorrelation and correlation.

In the following sections, a general overview of stochastic
processes modeling is given. These models are used in later
sections, accounting for specificities in wind uncertainty.
Finally, proposed model is applied on a case study.

Stochastic process is a collection of random values used
for describing the evolution of some random variable over
time. This evolution can take several or even infinitely many
outcomes. In this sense, forecast error evolution over time is a
typical example of a stochastic process. Therefore, the existing
knowledge on stochastic process modeling can be used for the
forecast error simulation.

Each stochastic process is described with different
mathematical parameters and a basic task set for a model
used for stochastic process generation is to provide which
parameters are preserved and to which extent. Based on these
requirements, in following paragraphs, a typical parameters
requiring preservation are examined and modeling techniques
enabling their preservation are provided.

Common approach adopted for stochastic process modeling
is the application of one of the autoregressive models. In
[1], [2] an autoregressive moving average model is proposed,

II. STOCHASTIC PROCESSES SIMULATION



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:9, No:2, 2015

139

while [3] adopts a native autoregressive model for the forecast
error modeling. General mathematical expression describing
autoregressive model in vector form (i.e. VAR model) is:

yt = a+

p∑

i=1

Aiyt−i + εt (1)

Variables and parameters in these models are:
yt Vector of time series variables at time t
a Vector of offsets
Ai Autoregressive matrices
εt Multivariate normal random vectors

Basic characteristic of such models is their ability to
capture certain interdependencies among variables at different
time instances (autocorrelation) and, in case of vector
forms, interdependencies among variables in different vectors
(correlation).

Choosing appropriate values for parameters of
autoregressive process allows for exact autocorrelation
function to be preserved. Estimation of these parameters
requires historical knowledge on time series of modeled
process which are often unavailable. Furthermore, preservation
of these interdependencies is often not required to be exact
since it is usually not deterministic in the first place.

Second important parameter is the correlation between
variables of several stochastic processes. More precisely,
correlation between each vector in VAR model. In a simple
form, this requirement is met by inclusion of desired
covariance structure in Gaussian noise of VAR model. This
covariance structure is later transferred through the complete
autoregressive process. For this purpose, it is necessary to
apply multivariate random number generation—a procedure
for generation of random vectors from multivariate distribution
given its mean vector μ and covariance matrix Σ. Probability
density function of the multivariate normal distribution is given
with:

y =
1√

(2π)d|Σ|e
−1
2 (x−μ)TΣ−1(x−μ) (2)

where, together with previously introduced variables, d is the
dimension of vectors. Procedure for generating multivariate
normal random vectors with desired mean vector and

Described procedure enables simulation of stochastic
process with desired covariance matrix, mean vector and
autocorrelation function within each vector. However, model
is limited by means of statistical distribution of each vector in
stochastic process. Namely, only normal stochastic processes
are captured with previous model and further improvements
are required in order to capture other distributions as well.
Furthermore, another important requirement, characteristic for
forecast errors, is the functional dependence of standard
deviation over forecasting horizon. Namely, if a 24 hours
ahead forecasting is considered, then each hour’s forecast has
different standard deviation. If such requirement is included in
multivariate Gaussian noise then the autoregressive evolution
distorts this dependence and resulting process fails in capturing
this characteristic. Since this requirement is far more important

than the autocorrelation and correlation, an improvement of
previous model is necessary. The same improvement resolves
both of the mentioned issues. Following paragraphs give an
overview of the procedure used for this purpose.

Stochastic process can be transformed from normal
distribution to any desired distribution with specific mean and
standard deviation. First, normal distribution is transformed to
uniform, accounting for its mean and standard deviation, via
cumulative distribution function

xunif = Fx̄1σ1
(xx̄1σ1).

This uniform process can then be transformed to any desired
process if an inverse cumulative distribution function is known
for this process

xx̄2σ2 = F−1
x̄2σ2

(xunif ).

This transformation can be used for the generation of a
stochastic process with desired distribution, mean and standard
deviation. However, in case of a correlated and autocorrelated
process, this transformation introduces deviations from the
original parameters. In the case of statistically similar
distributions, these deviations are negligible. Furthermore, it
was stated previously that the most important parameter in
this case is the dependence of standard deviation on the time
horizon. Accounting for this requirement, losing accuracy in
correlation and autocorrelation could be seen as an acceptable
compromise.

Fig. 1 displays a principal depiction of the procedure
outlined above. First component in procedure is the Gaussian
noise simulation preserving the desired mean vector and
a covariance structure. The second component is the
autoregressive model which generates autocorrelated series.
Finally, obtained series are transformed to a series with
a desired distribution and standard deviation dependence
on horizon. Main disadvantage of the proposed model is
the distortion of the original autocorrelation and correlation
through the transformation process. Further improvements can
be incorporated in order to eliminate this issue; however,
since these distortions are not significant and the importance
of autocorrelation and correlation accuracy is not of interest
here, these improvements will not be considered. It should be
pointed out that in the case where autocorrelation is not of
importance, a VAR model can be excluded from the proposed
procedure.

Fig. 1 Models for stochastic process simulation

covariance matrix is described in Appendix A.
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Wind power uncertainty has been seen as the greatest
challenge in early years of wind power integration. During this
period large number of publications covered this topic. In these
first works a wide terminology was used for describing this
particular issue. Terms like variability and uncertainty were
often misunderstood and other terms such as intermittency
were used inappropriately. However, years of research resulted
in wide knowledge on wind power uncertainty.

In order to understand uncertainty in wind power it is
necessary to examine its origins. Uncertainty in wind power
is a direct consequence of wind power production forecasts
preformed on different time horizons and with different
models. Following paragraphs distinguish several forecasting
techniques recognised in existing publications [4]:

The simplest technique is of course the persistence model.
In this approach, the forecast value is equal to a previous
realisation. This model also serves as the base model, and
the validation of forecasting methods is performed through
the comparisons with this model. Application of this model
is appropriate for a single or few steps ahead forecast.
Furthermore, the major disadvantage of this model is that it
can not capture extreme events.

Second modeling approach includes time-series analysis
[5]. Based on this knowledge, autoregressive models are
developed. These models perform better than persistence
model. However, the issue of forecasting extreme events
remains unresolved in this approach as well.

The best approach for capturing extreme events is the
incorporation of the weather models [6]. Advanced weather
forecasting techniques allow for precise wind conditions
forecasting and later transformation to power output. This
model has proven to be the best solution for mid- and
long-term forecasting.

In this work, a weather model forecasting is assumed and
forecast error simulation model is based on specificities of
such a model. Following paragraphs give an overview of the
application of previously introduced general stochastic process
simulation models for this purpose.

As it was previously stated, basic requirement for a forecast
error simulation model is the preservation of several important
parameters. Similarly, certain characteristics of forecast error
time series have been considered in models developed here.

First, the autocorrelation function within forecasting error
evolution over considered period was considered. Preservation
of this parameter is in direct relation with forecasting
horizon and later usage of the process. For example, if a
24 hour ahead forecasts are performed then the autocorrelation
should be preserved on this temporal level. Such requirement
introduces even further complications, since it is difficult to
maintain certain autocorrelation for such a low lag samples.
Furthermore, if a simulated process is later used for analyses,
where each hour is considered separately, then this requirement
is pointless. In [3] an autocorrelation of wind power forecast
error series was investigated and an exponentially decreasing
dependence of autocorrelation on a time lag was reported.
Except for this publication, this issue was not given a

significant importance—as far as the authors are informed. In
the mentioned publication it was concluded that this function is
highly variable, depending on sites, but certain autocorrelation
must be included in the forecast error models. Following this
premise, a VAR model used here accounts for this dependence.

On the other hand, a matter of forecast error correlation
is vary important due to the effect of error reduction. In [7],
[8] this issue has been investigated and it was concluded that
the wind power forecast errors are correlated, and expression
combining correlation coefficient with distance among the
plants has been proposed. It can be assumed that the similar
correlation is exhibited among wind speed forecast errors
as well. This dependence was included in stochastic process
simulation model presented in this work.

Finally, the most important parameter that needs to match
real data is the standard deviation of the forecast error. Since
the 24 hour ahead forecast error is modeled here, a standard
deviation varies with the forecast horizon. In [9] a standard
deviation of forecast error for different horizons was examined.
Fig. 2 displays this dependence.

Knowing all of these characteristics that require
preservation, it is possible to apply models presented in the
previous section for the wind speed forecast error simulation.
In [9] it was stated that the wind speed forecast error is
normally distributed around the forecast value. Furthermore,
it was concluded that the parameters for this distribution
are dependent on the forecast value, but this dependence is
not significant and it was neglected in further examinations
in the mentioned publication. The same assumption is
introduced here, since there are no publications reporting on
this dependence in detail, as far as the authors are informed.
As a final remark on the mentioned publication—which
serves as the basic background for this work—wind speed
to wind power error transformation has been investigated.
Following remarks relay on the examinations presented in
this publication.

Forecasting error transformation from wind speed to wind
power domain is performed via the wind power plant P/w
curve. High non-linearity of this curve is the main reason
for the big disputes surrounding the distribution fit of wind
power forecast error discussed in several publications [10],
[11]. Fig. 3 depicts this transformation graphically. It can be

Fig. 2 Dependence of standard deviation of wind power forecast error on
forecasting horizon

III. WIND POWER UNCERTAINTY
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seen that the same distribution of forecast error in wind domain
can result in very different distributions in the power domain,
depending on the mean wind speed.

Incorporating specific parameters of wind speed forecast
error mentioned in the previous paragraphs, a model for the
yearly simulation of forecast error can be developed. As
an input for this model, a certain wind power plant (WPP)
disposition and yearly wind speed data (or Weibull distribution
parameters) for each location are used. In accordance, two
models are developed, based on different requirements and
input data. In its core, each of these models is a Monte Carlo
simulation with a rather complex interdependencies among
random variables.

First model is based on the measured hourly wind speed
data which can be seen as prefect day-ahead wind speed
forecasts for each location. Simulated forecast error can be
superposed on these prefect forecasts and day-ahead wind
speed scenarios can be obtained for each location and for
each day of the year. Such wind speed scenarios can then
be transformed into the power domain, thus obtaining the
wind power scenarios. Summation of these scenarios allows
for the error reduction caused by WPP dispersion. This model
accounts for the autocorrelation function, but if this parameter
was not of interest for a specific applications, proposed model
can be further simplified by the simple elimination of the VAR
model component. A principal depiction of this model is given
in Fig. 4.

Second model is developed based on the unavailability of
wind speed measurements time series, but with a knowledge of
the Weibull statistical distribution parameters of wind speeds at
each location. In such circumstances it is possible to simulate
wind speed data in a similar manner, like in the case of
forecast error simulation. However, autocorrelation function

in the case of wind speeds is more important than in the
case of forecast errors. Since the 24 hour simulation can not
capture this function, only the variant in which autocorrelation
is not required is considered here. In such model, wind
speed correlation based on WPP disposition is introduced in
multivariate normal random number generator. In the next
step, this process is transformed into Weibull distribution with
desired parameters. A principal depiction of the second model
is given in Fig. 5. The issue of the wind speed autocorrelation
can be resolved by a yearly wind speed data simulation;
however, such approach is not considered here since it is not
a primary concern of this work.

Both of these models are applicable for power system
development analysis. Knowing the possible locations of WPP
it is possible to estimate increase in balancing power and
reserve capacity requirements caused by the introduction of
the new WPPs.

IV. C

For a first case study, a single WPP was considered with
a known wind speed 24 hours ahead forecast. Previously
described Model 1 was used for the simulation of wind
speed and wind power forecast error scenarios. Fig. 6 depicts
forecasts of wind speed and wind power, together with
percentile plot of forecast error scenarios for both wind speed
and wind power. In this example, a linear increase in wind
speed was chosen as forecast in order to examine error
transformation at all points in a power / wind curve. Previously
mentioned non-linearity of transformation is even more
pronounced in this example. It is obvious from this depiction
that, in simulation of wind power forecasting performance, it is
important to account for the actual forecasting model it aims to
simulate. Weather based forecasting models introduce certain
specificities which can not be reproduced with simple models,
and neglecting those causes major simplification which can
result in an unrealistic results.

For a further validation, a second case study is used,
considering yearly wind power forecast error distribution in

Fig. 3 Wind uncertainty transformation to power

Fig. 4 Principal depiction of Wind power yearly forecast error simulation
model 1

Fig. 5 Principal depiction of Wind power yearly forecast error simulation
model 2

ASE STUDY
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a system consisting of four WPPs, each having installed
power of 100 MW and the same equivalent power / wind
curve. Characteristic power / wind curve used in this example
is a typical conversion curve in wind power plants with a
cut in wind speed at 3 m/s, nominal power output starting
at 14 m/s and with a cut out wind speed at 24 m/s. It
should be pointed out that no modification of wind turbine
power / wind characteristic is required when representing
whole plant except for the necessary scaling on this temporal
level. Fig. 7 graphically depicts physical disposition of these
four WPPs.

Year long measurements are available for these locations
serving as an input for Model 1. In case of Model 2, a Weibull
fit for each of these location’s wind speed data is calculated
and used as an input. Fig. 8 depicts forecast error distribution
for both of these models. First, it is necessary to point out
the resemblance in yearly error distribution with results in
[9], contributing to general validity of the proposed models.
In further matter, a significant resemblance can be noticed in
results for both models, allowing for validation of Model 2.
However, it is necessary to point out that accuracy of Model
2 is highly dependent on accuracy of the Weibull fit for each

location’s data. Accounting for this precondition, Model 2 can
be used as a simple, but accurate, model for wind power
forecast error simulation.

V. CONCLUSIONS

In this paper, a novel approach for wind power forecast error
simulation is proposed. Model is based on stochastic process
simulation which is used for wind speed error simulation.
Together with known disposition of wind power plants and
their equivalent power / wind curves, together with measured
or simulated wind speed data on these locations it is possible
to simulate wind power forecast error data. In this sense, two
distinct models are proposed in this paper depending on data
availability. First model uses wind speed measurements, while
the second model uses Weibull parameters of wind speed data.

Both models can be used for wind power forecasting
performance simulation. The basic advantages in proposed
models can be summed up in following. Proposed models
account for the forecast error correlation and therefore
reproduce important effect, the forecast error spatial
smoothing. Model 1 accounts for the autocorrelation in wind
power forecast error. Although often neglected, this parameter
can play important role in certain analyses considering
longer temporal instances. Finally, proposed models simulated
performance of weather based forecasting techniques, enabling
reproduction of non-linear transformation of wind to power

Fig. 6 Percentile depiction of wind power forecast scenarios

Fig. 7 Case study used for comparison of wind forecast error simulation
models

Fig. 8 Wind power forecast error distribution for models 1 and 2
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forecast error. Accounting for all of these advantages, proposed
models can find application in many different studies involving
wind power uncertainty.

APPENDIX A
GENERATING MULTIVARIATE NORMAL RANDOM VECTORS

Generating multivariate normal random vectors with desired
mean vector and covariance matrix is based on several
theorems in statistics. The most important of these is the Mean
and Variance of Linear Transformation theorem [12]. Namely,
if X has mean E[X] and covariance ΣX , then

Y = AX + b

has mean
E[Y ] = b+AE[X]

and covariance matrix

ΣY = AΣXAT .

Based on these considerations it is obvious that by careful
choice of parameters A and b it is possible to transform process
with arbitrary mean and covariance matrix to a process having
desired parameters.

Firstly, it is necessary to choose mean and covariance matrix
for X . For convenience, let E[x] = 0 and ΣX = I . Such
process is easy to simulate and later linear transformations
are simplified. Now, it is necessary to chose b and A in order
for resulting process Y to have desired mean E[Y ] = μ and
covariance matrix ΣY = ΣX . Obviously,

E[Y ] = b+AE[X] = b,

therefore choosing b = μ results in desired mean of Y . On
the other hand, choice for A is less straightforward. In the
case of previously introduced process X , A should satisfy
ΣY = AIAT . It is out of the scope of this work to derive
a complete mathematical background of this problem and a
final conclusions will be provided only. Namely, if the matrix
A is chosen as

A = Λ
1
2Φ,

where Φ is a matrix containing normalized eigenvectors
of desired ΣX as columns and Λ is diagonal matrix with
eigenvalues of ΣX as diagonal elements, then the transformed
process Y has covariance matrix ΣY = ΣX [13].
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