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Abstract—Accurate determination of wind turbine performance
is necessary for economic operation of a wind farm. At present, the
procedure to carry out the power performance verification of wind
turbines is based on a standard of the International Electrotechnical
Commission (IEC). In this paper, nonparametric statistical inference
is applied to designing a simple, inexpensive method of verifying the
power performance of a wind turbine. A statistical test is explained,
examined, and the adequacy is tested over real data. The methods use
the information that is collected by the SCADA system (Supervisory
Control and Data Acquisition) from the sensors embedded in the
wind turbines in order to carry out the power performance
verification of a wind farm. The study has used data on the monthly
output of wind farm in the Republic of Macedonia, and the time
measuring interval was from January 1, 2016, to December 31, 2016.
At the end, it is concluded whether the power performance of a wind
turbine differed significantly from what would be expected. The
results of the implementation of the proposed methods showed that
the power performance of the specific wind farm under assessment
was acceptable.

Keywords—Canonical correlation analysis, power curve, power
performance, wind energy.

I. INTRODUCTION

N the process of designing a wind farm (WF), the

estimation of the total production of electrical energy is the
most essential phase. The estimation is based on the power
curve of the selected wind turbine (WT) that would be
installed in the WF. Power curves are catalogue data that are
proclaimed and guaranteed by the manufacturer of the WTs.
After a WF is built, the power performance of each WT must
be verified in accordance with the international standard
IEC61400-12-1 [1]. Accurate determination of WT
performance is necessary for economic operation of a WF.
Generally, the application of the method elaborated in the
international standard is not inexpensive. For this reason, it is
important to devise alternative methods, with wide and simple
applicability.

Neural network approaches have been used to try and
characterise the power performance of WTs in a WF.
Stochastic techniques are often dismissed as being inferior to
those which use neural networks, but those stochastic
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techniques proposed are often overly simplistic [2], [3]. The
simplicity of the stochastic methods is due to deduction of
data variability to only one parameter- the power output, [4],
[5]. That means, the variation of power output of each WT in
the WF, is analyzed upon the wind speed measurements
gained from the measuring mast positioned within the farm,
[1]. Power curve measurements based on met masts according
to the IEC standard, not always can be carried out at WTs
located: (i) in the middle of WFs, concerning large WF on flat
terrain, neither (ii) small WFs on semi-complex terrain, [6],
[7]. In the first case, due to the wake immersion of
neighboring WTs, no position can be found for the met mast
where the wind measured at the mast would be representative
for the inflow of the WT. The same applies to the second case,
where due to local vortices caused by the terrain orography,
the wind speed mast measurements cannot be completely
confidential for further analysis, [8]-[11]. It is clear that, the
main factors affecting array efficiency are WF layout, wind
regime and the type of terrain, [2].

In this paper, the power performance verification is carried
out by using statistical method, [12]. Canonical correlation
analysis (CCA) is the one of the oldest and best-known
methods for discovering and exploring dimensions that are
correlated across sets. The canonical correlation is a
multivariate analysis, which allows to correlate the measured
wind speed and power outputs variations, to those provided in
the power curve from the WT manufacturer. The method
elaborated in the paper estimates the similarity among
guarantied power curve (GCp) and estimated power curve
from each WT and says whether the power performance of the
specific WT under assessment differs significantly from what
would be expected.

II. GENERAL DATA FOR WP BOGDANCI

The WF analyzed for this report is located in southeast part
of Rep. of Macedonia. It consists of 16 turbines from the same
type — SIEMENS SWT-2.3-93 (80-m hub height). The GCp is
represented by data pairs, where the wind speed interval
between cut-in (4 m/s) and cut-out wind speed (25 m/s)
sampled at a distance of 1 m/s.

The wind park area covers elevations of between 280 and
500 m above sea level. The long-term average wind speed at
an elevation of 500 m has been established as 6.9 m/s at 50 m
above ground. The turbines are generally lined up in rows
which are perpendicular to the prevailing wind direction
(northwest) at the site. Average distance between turbines in
the same row is roughly 2,2 rotor diameters. Also, there are
two MET towers which measure wind speed (m/s), direction
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(0-359°) at 50 m, barometric pressure (mBar) and temperature
(°C). The data sampling from the SCADA system is averaged

41215,

over 10-minute periods, as superposed in IEC 61400-12—1.
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Fig. 1 Orographic map of the WF with WT positions in geographic coordinates system

III. PROPOSED METHOD

A. Identification Criteria for Outliers

Before implementation of the main procedure for power
curve verification, equally important is the methodology of
filtering the data from outliers. Outliers are defined as the data
points that lie outside the probabilistic WF power curve and
are caused by multiple non-meteorological factors:
communication error, WT outage or curtailment action, [13].
Yet, there are cases when some coarse data should not be
classified as outliers because they contain relevant information
for the power performance of some WT. So, the entire process
of filtering the data must be performed very warily.

Fig. 2 shows the scatter plot of no filtered data of the wind
speed versus the power output of the WTs, which gives us
rough but initial assessment for the work of every WT. WTs
that are adjacent to one another have correlated power outputs,
[14]. It can be noticed that there are outliers and extreme
observations at each WT. To avoid the consideration of any
wrong data during calculations and final comparisons, a set of
right data have been obtained for each turbine.

In this paper, three identification criteria for outliers are
proposed:

i) All recorded numerical values for power outputs that have
values equal or below zero when the wind speed>cut-in
speed, are rejected because these values represent faults in
the performance of the WT during its operation, or
because the turbine status was 0 (not in operation). It must
be noticed that, at some wind speed values, there were
many negative active power outputs, generally between 2-
7 m/s for all turbines without exception.

i) Determination of outliers on a criterion of greater than three
times standard deviations (30) from the WT power curve
in order to eliminate the power outputs outliers, registered

around each wind speed. Here, it is proposed to use
modified z-score method for detecting that type of
outliers, [15].

Each wind speed value paired with power output value
defined in the guaranteed power curve by the manufacturer,
represents a single sample of interest. Intervals of each sample
are -0.5+vi<v;<0.5+v;. We denote the order statistics for each
wind speed value as: vqy,...,Vvy, where N is the size of the
sample Pi,...,Pn of power output. We have a sample of N

observations with median P . The modified z-score of an
observation is defined as:

M, =0.6745(F’i -P) )
MAD

with MAD denoting the median absolute deviation. Calculated
modified z-scores for each recorded power output-P; from the
defined sample, with an absolute value of greater than 3SMAD
are labeled as potential outliers. Outliers detected at each wind
speed by the modified z-score, are around 0.3% for each WT.
iii) Third type is consecutive outliers, which are detected
below the cut-in wind speed and above 23 m/s. Since, the
production of electricity at intake wind speeds in the
interval 0-3.5 m/s is insignificant, these data are
eliminated. On the other hand, that range of data is not
included in the GCp. Similar, there were not any
significant power output points for the wind speed
interval from 23 m/s and along. In the range 23-25 m/s,
only 0.08% of data was registered and the output power
was not as expected.
Discarded data in percent from the whole data base for each
WT, according to the three criteria, are given in Table I. It can
be noted that the percent of outlier data is relatively big,
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starting with 28.99% at WT8, to 39.23% at WT15. In the other
words, we reject irregular data in duration of 103-143
days/year, depending on the WT. It must be noted that the
purpose of the paper is verification of the similarity between
GCp and power curves from each WT gained form valid data,
not a correction of outliers.

TABLEI
PERCENT OF OUTLIERS FOR EACH WT

Criteria Criteria Criteria Total
No. of WT Pou<O kW |[Mi|>3MAD v,<3.5m/s vi>23m/s outliers

(%) (%) (%) (%) (%)

WTI1 17.43 3.48 13.94 0.06 34.86
WT2 16.10 3.22 12.88 0.18 32.20
WT3 16.17 3.23 12.94 0.01 32.34
WT4 16.29 3.25 13.03 0.03 32.58
WT5S 15.55 3.11 12.44 0.07 31.10
WT6 15.12 3.02 12.10 0.39 30.24
WT7 14.79 2.95 11.84 0.14 29.59
WTS8 14.49 2.89 11.60 0.15 28.99
WT9 14.66 2.93 11.73 0.42 29.32
WTI10 14.58 291 11.67 0.55 29.17
WT11 15.96 3.19 12.77 0.03 31.90
WTI12 17.52 3.50 14.02 0.07 35.04
WTI13 19.57 391 15.66 0.04 39.14
WT14 17.73 3.57 14.19 0.05 35.47
WTI15 19.61 3.92 15.69 0.16 39.23
WT16 18.60 3.72 14.88 0.24 37.20

B.Finding the Most Representative Points of the Power
Output of Each WT

The data required for modeling a power curve are the wind
speed and power output recorded at periodic intervals over a
long time, [2]. In this paper, the time measuring interval was
from January 1, 2016 to December 31, 2016.

In order to construct power curve for each WT that will
represent the most adequate, i.e. most significant pair points

(wind speed, power output) from the time series data, we
propose choosing the most frequently recorded data pairs. The
methodology used for this purpose is bivariate normal
distribution. From the time series data, subordination by
frequency of occurrence is done for every interval -
0.5+vk<w<0.5+vy, where Vi denotes for wind speeds in the
range 4-23 m/s (defined by GCp), i.e. k=1,...20. For each WT
and each wind speed interval, the bivariate normal distribution
is applied.

An rxc contingency table with cell probabilities pj
specifies the bivariate normal distribution of two discrete Vi
and Pj, where I<i<r and I<j<c. The bivariate normal
distribution is the statistical distribution with probability
density function, [16]:

pV.P) = 1 exp[ Z; } 2)

2o,ool-p? | 20-p7)
where
2, -l ;3\7)2 _2p(, = Tc);(ppj -P) ¢ ;;)2 3)
and
p = cor(v,P) = Mo C))

0,0

is the correlation of v and P, and Vi, is the covariance.

Symbols o,, op, V and P in (2)-(4), stand for standard
distribution and mean value of wind speed and power output,
respectively.
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Fig. 2 Scatter plot of the wind speed vs the power output of the 16 WTs for 2016

The variance of the wind speed is analyzed in each interval
0.5+vi<w<0.5+Vy, because of the big difference of so-called
“response” of the WT, i.e. power output. Fig. 3 represents the
GCp and all 16 power curves obtained for the 16 WTs. The
variance in the wind speed among different WTs in the
interval of 5-11 m/s can be noticed. Generally, a performance
improvement is recommended for all WTs in this interval.
Before achieving nominal wind speed (13 m/s) and above it, at
each WT, the performance was found within the expected
limitations.

C.Canonical Correlation

After establishing the power curves for each WT, the
procedure to carry out the power performance verification is
next to be done.

CCA is part of multivariate analysis of variance
(MANOVA), which represents a method for exploring the
relationships between two multivariate sets of variables, all
measured on the same individual, [12], [17]. For CCA, X has
tobean nxp and Y nx g matrix, with p and q at least 2, where
p is the number of variables contained in the set X and q is the
number of variables in the set Y.
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There are different canonical variates within each set. If
there are p variables in X and q variables in Y, then there are at
most k=min(p,q) canonical variates in either set. These are
Ui=a'iX and Vi=b'jY, with i ranging from 1 to k. Across each
set, Ui and V; are uncorrelated. The correlation between
corresponding canonical variates Ui and Vi is the ith canonical

correlation, as shown in (7). In the other words, the first
canonical variate is the linear combination of variables in one

set that has the highest possible multiple correlation with the
variables in the other set, [18].

Var(U;)=a') a; Var(V,)=bY b; Cov(U,,V,)=a Db )
1p nq Pa

Although the correlation measure is:

Cov(U,.V,) (®)

WVarU, Var(,)

The first pair of canonical variables, or first canonical
coefficient, is the pair of linear combinations Ui, Vi having
unit variances, which maximize the correlation. The kth
canonical coefficient is the pair of linear combinations Uy, Vi
having unit variances, which maximize the correlation among
all choices uncorrelated with the previous k-1 canonical
variable pairs, [15]. The existence of overall relationships
between two sets of variables is tested by the canonical
correlation coefficients and the significance measures the size
of relationships. As the correlation coefficients have greater
value, the similarity in the set is higher.

Lastly Wilk's lambda, is used as a test of significance of the
canonical correlation coefficient. The closer to zero the
statistic is, the more the variable in question contributes to the
model. The null hypothesis is rejected, when Wilk’s lambda is
close to zero, although this should be done in combination
with a small p-value [15]. The null hypothesis is that the data
among one set are strongly correlated and the significance
level is 5 %. Wilk’s lambda is given as:

Corr(U,,V,) =

A=]]! ©

,,,,, Ap are eigenvalues of from the matrix term
produced from the submatrices of the covariance matrix, [15].

In our case, every WT is a single individual, the set X
contains the wind speed and power output vector data from
GCp, and Y contains the wind speed and power output vector
data from the calculated WT curve. Namely, p=q=2 (two
vector columns for wind speed and power output) and the
number of sets is N=1,...,20 because of the wind speeds range,
4-23 m/s. Since, we are testing bivariate set of variables, the
number of correlation coefficients is two (F1, F2). Each WT’s
power curve is correlatively tested to the GCa. Table II shows
the calculations obtained with the CCA. Taking into
consideration all test score values listed in the table, it can be
considered without any exception, that there is a positive
correlation among each WT with the GCp. “Sig” or
significance (p-value) is to quantify the importance of the
canonical coefficients. If the significance is small, (i.e. under
0.05) the null hypothesis will be reject. The statistical
significance is additional measurement when the values of the
canonical coefficients F1 and F, are questionable, or have
values with limited importance for the canonical correlation,
[17]. From Table II, it can be noted that all of these tests, for
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each WT, are significant with p<0.05. The correlation output
shows overall model fitting.

IV. CONCLUSION

In the paper, a subsequent methodology for obtaining and
verification of power curve of a WT in operation has been
presented. The usefulness of the CCA is demonstrated by
applying over actual WF data. For a more detailed and more
reliable verification of the power curve, the method seeks for
similarity among the most frequent data pairs, not only
comparison of the WTs’ power output and the one provided
by the WT manufacturer. The following experience has been
gained by the application of the methodology:

(i)it is well situated to analyze changes of the power curve of
WTs- both separate for each interval of the GPc, and
overall assessment;

TABLEII
RESULTS OF THE CCA AT SIGNIFICANCE LEVEL OF 5 %

No.of WT  F F.  Wilk'si: Sig. (1) Wilk’sl2 Sig (2)
WTI 0931 0.020 0.133 0.7 0.999  0.936
WT2 0920 0.090 0152 0139 0992  0.174
WT3 0912 0297 0.154 0164 0912 0217
WT4 0847 0077 0282  0.101 0994  0.754
WIS 0920 0.067 0153 076 0996  0.786
WT6 0936 0010  0.123 0.2 0.999  0.968
WT7 0911 0257 0159 0206 0934 0287
WT8 0912 0.095 0167 0153 0991 0.7
WT9 0902 0.156 0.183 0423 0976  0.524
WTI0 0918 0291 0.143 0569 0915 0227
WTII 0871 0403 0202 0329 0838  0.087
WTI2 0881 0172 0217 0516 0971 0482
WTI3 0921 0097 0.I51 0161 0991  0.693
WTI14 0905 0.141 0.177 0345 098  0.565
WTIS 0904 0.027 0182 0212 0999 0914
WT16 0909 0.175 0.168 054 0969  0.473

(i1) the procedure is not subject to any costs, as only SCADA
data is needed;

(iii) there is no necessity of air density data normalization, as
in IEC 61400-12—1;

(iv) the methodology is less sensitive to site effects than
measurements with masts;

(v) the WT power curve verification method is not a
significant problem. This however is very dependent on
data purification form outliers. As noted in the
identification criteria of outliers, the whole process of
filtering the data must be accomplished deliberately in
order not to remove relevant data from the power
performance of the WTs.
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