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Weighted Harmonic Arnoldi Method for Large
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Abstract—The harmonic Arnoldi method can be used to find
interior eigenpairs of large matrices. However, it has been shown
that this method may converge erratically and even may fail to do
so. In this paper, we present a new method for computing interior
eigenpairs of large nonsymmetric matrices, which is called weighted
harmonic Arnoldi method. The implementation of the method has
been tested by numerical examples, the results show that the method
converges fast and works with high accuracy.
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I. INTRODUCTION

CONSIDER the large interior eigenvalue problem

Axi = λixi (1)

where A is an n × n real matrix, and (λi, xi) is referred to
as an eigenpair of A with ‖xi‖ = 1, i = 1, 2, · · · , n. Here the
norm used is the Euclidean norm. We are mainly interested in
computing some interior eigenpairs of A.

Recently, interior eigenvalue problems have been receiving
a lot of attention. Eigenvalues in the middle of the spectrum
are required for studying tidal motion, and for both adaptive
polynomial preconditioning and Richardsons iteration for in-
definite systems of linear equations. Other implementations
include power system simulations and stability analysis in
computational fluid dynamics [1], [4], and so on. In this paper
we assume that factorization is impractical for the size and
structure of the matrix. This makes the problem difficult.

For the given target point τ , interior eigenvalue problems
mean that we want to compute some eigenvalues near τ . Note
that

(A− τI)−1xi =
1

λi − τ
xi (2)

Zhengsheng Wang: Department of Mathematics, Nanjing University
of Aeronautics and Astronautics, Nanjing 210016, P. R. China. e-mail:
wangzhengsheng@nuaa.edu.cn

Jing Qi: Department of Mathematics, Nanjing University of Aeronautics
and Astronautics, Nanjing 210016, P. R. China. e-mail: qijingmath@163.com

Chuntao Liu: Department of Mathematics, Nanjing University of
Aeronautics and Astronautics, Nanjing 210016, P. R. China. e-mail: li-
uchuntao9@126.com

Yuanjun Li: Department of Mathematics, Nanjing University of
Aeronautics and Astronautics, Nanjing 210016, P. R. China. e-mail:
lyj861125@163.com

So the eigenvalues near τ are transformed into exterior ones.
Here the eigenvalues λ1, · · · , λn of A are ordered by increas-
ing real parts or magnitude from τ .

When (A − τI)−1v can be computed, the shift-invert
Arnoldi method[12] is one of the most effective methods
for solving interior eigenvalue problems (2). Further, when
A is too large to factor, one can use the inexact shift-invert
Arnoldi algorithm, that is, matrix-vector products (A−τI)−1v
can be computed by solving the system (A − τI)u = v
approximately using an iterative method such as GMRES.
However, as assumed, factoring A− τI is impractical. So we
abandon this idea here.

The harmonic Arnoldi method[1], [2], [3], [4] is one kind of
projection method for solving the interior eigenvalue problem.
A remarkable merit of the harmonic Arnoldi method is that it
is suitable for computing interior eigenvalues and associated
eigenvectors of A since it transforms interior eigenvalues into
exterior ones without factoring A− τI .

Like the standard projection methods, to improve efficiency
and limit memory requirements, the harmonic Arnoldi meth-
ods are restarted after m iterations, and the method of restart is
crucial for the success and efficiency of a restarted algorithm.
The implicit restart approach has appeared to be a very
useful technique. A key for the success of the implicit restart
technique is reasonable selection of shifts. The implicitly
restarted harmonic Arnoldi algorithm by Morgan[3] most often
used those unwanted harmonic Ritz values as shifts.

The weighted Arnoldi method is a quite effective scheme
for large eigenvalue problems[5]. In this paper, we apply
the weighted techniques to the harmonic Arnoldi method for
the large interior eigenvalue problems, so called a weighted
harmonic Arnoldi method.

The outline of this paper is as follows. In Section 2, we
review the harmonic Arnoldi method. In Section 3, a weighted
harmonic Arnoldi method is proposed. In Section 4, some
numerical experiments and comparisons are given which show
that this new method is powerful and cost effective scheme for
computing large matrix interior eigenvalue problems. Finally,
we make some concluding remarks.

Throughout the paper, denote by Km(A, v) the Krylov
subspace spanned by v,Av,A2v, · · · , Am−1v, AT denote the
transpose matrix of A and AH denote the conjugate transpose
matrix of A.
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II. THE HARMONIC ARNOLDI METHOD

Assume dim(Km(A, v1)) = m. The Arnoldi process builds
up an orthonormal basis {vi}mi=1 of Km(A, v1), and it can be
written in the matrix form

AVm = VmHm + hm+1,mvm+1e
∗
m = Vm+1H̃m (3)

where e∗m is the mth coordinate vector of dimension m, Vm =
[Vm, vm+1] = [v1, v2, · · · , vm+1] is an n × (n + 1) matrix
whose columns form an orthonormal basis of the (m + 1)-
dimensional Krylov subspace Km+1(A, v1), and H̃m is the
(m + 1) ×m upper Hessenberg matrix which is the same as
Hm except for an additional row whose only nonzero entry is
hm+1,m in position (m+ 1,m).

For the given target point τ in (2), the harmonic Arnoldi
method seeks the pairs (λ̃i, x̃i) satisfying the harmonic
projection[3]{

x̃i ∈ Km(A, v1)

(A− τI)x̃i − (λ̃i − τ)x̃i ⊥ (A− τI)Km(A, v1)
(4)

and uses them to approximate some eigenvalues of A near τ
and the associated eigenvectors. (λ̃i, x̃i) are called harmonic
Ritz values and harmonic Ritz vectors of A with respect to
Km(A, v1), respectively. It is seen from (3) that the above
procedure is equivalent to solving the generalized eigenprob-
lem{

x̃i = Vmgi
(Hm − τIm)Hgi =

1

λ̃i−τ
(H̃m − τ Ĩm)H(H̃m − τ Ĩm)gi

(5)
where Ĩ is the (m+ 1)×m identity matrix with the last row
being zero.

The algorithm can be presented as follows.

Algorithm 2.1 The harmonic Arnoldi Method
1) Start: Given the dimension of a Krylov subspace m,

the target point τ , the number k (k < m) of desired
eigenpairs, and a prescribed tolerance tol. Choose an
initial vector v1 with unit length;

2) Iteration: Construct the upper Hessenberg matrices Hm

and H̃m as well as Vm by the Arnoldi process;
3) Computation of approximate eigenpairs (λ̃i, x̃i), (i =

1, 2, · · · ,m) by:
if Hm − τI is singular, solving

[(Hm − τI) + (Hm − τI)−Hemh
H
m+1,mhm+1,me

H
m]gi

= (λ̃i − τ)gi
otherwise, solving

[(Hm − τI)H(Hm − τI)emhHm+1,mhm+1,me
H
m]gi

= (λ̃i − τ)(Hm − τI)Hgi

Then select the k pairs (λ̃i, x̃i) as approximations to
the wanted eigenpairs (λi, xi) where x̃i = Vmgi, i =
1, 2, · · · , k;

4) Test for convergence: Compute the residual norms of
(λ̃i, x̃i) directly, i = 1, 2, · · · , k. If thet are all below
the tol, then stop, else continue;

5) Restart: Using the harmonic Ritz vector x̃i, i =
1, 2, · · · , k to form a new initial vector v1, and go to
step 2.

III. THE WEIGHTED HARMONIC ARNOLDI METHOD

We define the D-scalar product as

(u, v)D = vTDu (6)

(u, v)D = vTDu =
n∑

i=1

diuivi (7)

where D = diag[d1, d2, · · · , dn], di > 0, u and v are two
vector. Also, denote d = [d1, d2, · · · , dn]T .

The norm associated with this inner product is the D-norm
‖ · ‖D and defined by ‖ · ‖D =

√
(u, u)n =

√
uTDu =√∑n

i=1
diu2i . We choose the vector d such that ‖d‖2 =

√
n.

This choice enables us to recover the Euclidean norm if all
the elements of d are equal.

The following algorithm describes the weighted Arnoldi
process which uses the D-inner product (·, ·)D to construct
a D-orthonormal basis of Km(A, v) starting with the vector
ṽ1 = v

‖v‖D
. The aim of defining the new inner product is

moving components of residual vector to zero as fast as
possible cases.

Algorithm 3.1 The weighted Arnoldi process
1) Start: Choose an initial vector ṽ1 such that ṽ1 = v

‖v‖D
;

2) Iteration: For j = 1, 2, · · · ,m, do

w = Aṽj

for i = 1, 2, · · · , j, do

w = w − h̃ij ṽi

h̃j+1,j = ‖w‖D; ṽj+1 =
w

h̃j+1,j

Vectors ṽ1, ṽ2, · · · , ṽm generated by Algorithm 2 form a
D-orthonormal base, in other words, if Ṽm = [ṽ1, ṽ2, · · · , ṽm],
then ṼmDṼ T

m = Im.

Theorem 3.1 If H̃m ∈ Rn×n is the upper Hessenberg
matrix constructed by weighted Arnoldi process, then
(1)AṼm = ṼmH̃m + h̃m+1,mṽm+1e

T
m,

(2)Ṽ T
mDAṼm ≈ H̃m

Najafi has given the proof in [5].
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Then, we give a weighted harmonic Arnoldi method for
large interior eigenproblems presented as follows.

Algorithm 3.2 The weighted harmonic Arnoldi Method
1) Start: Given the dimension of a Krylov subspace m,

the target point τ , the number k (k < m) of desired
eigenpairs, and a prescribed tolerance tol. Choose an
initial vector v1 with unit length and vector d with
‖d‖2 =

√
n;

2) Iteration: Construct the upper Hessenberg matrices H̃m

as well as Ṽm+1 = [ṽ1, ṽ2, · · · , ṽm+1] by the weighted
Arnoldi process with the initial vector ṽ1 = v1

‖v1‖D
;

3) Computation of approximate eigenpairs (λ̃i, x̃i), (i =
1, 2, · · · ,m) by:
if H̃m − τI is singular, solving

[(H̃m − τI) + (H̃m − τI)−Hemh̃
H
m+1,mh̃m+1,me

H
m]gi

= (λ̃i − τ)gi
otherwise, solving

[(H̃m − τI)H(H̃m − τI)emh̃Hm+1,mh̃m+1,me
H
m]gi

= (λ̃i − τ)(H̃m − τI)Hgi
Then select the k pairs (λ̃i, x̃i) as approximations to
the wanted eigenpairs (λi, xi) where x̃i = Ṽmgi, i =
1, 2, · · · , k;

4) Test for convergence: Compute the residual vector ri of
(λ̃i, x̃i) directly, i = 1, 2, · · · , k, if the residual norms are
all below the tol, then stop; else, denote r0 is the mini-
mal residual vector such that ‖r0‖2 = min1≤i≤m‖ri‖2;
compute di =

√
n |(r0)i|

‖r0‖2
, d = [d1, d2, · · · , dn], continue.

5) Restart: Using the harmonic Ritz vector x̃i, i =
1, 2, · · · , k to form a new initial vector ṽ1, and go to
step 2.

IV. NUMERICAL EXPERIMENTS

In this section we report some numerical experiments on
four problems. We have tested all the algorithms using MAT-
LAB 6.5 on a Intel Centrino 2 GHz with main memory 1024M
and machine precision ε = 2.22× 10−16. To make a fair and
reasonable comparison, for each example, the same vector was
generated randomly in a uniform distribution, orthogonalized
and utilized as the initial guess. The algorithms stopped as
soon as

max1≤i≤k‖(A− λ̃iI)x̃i‖2 ≤ tol
In all the tables below, we denote by m the steps of the
Arnoldi process, by iter the number of restarting, by err the
residual norm error, and by CPU the CPU timings in seconds.

Example 4.1 This problem is from [10], and the data
file is DW2048 in MATLAB. We are interested in finding

the three leftmost eigenpairs, i.e., the eigenvalues with three
smallest real parts.

We ran Algorithm 1 and Algorithm 3 on this problem.
The algorithms stopped as soon as the residual norm dropped
below tol = 1e − 6. The three approximate eigenvalues
calculated were λ̃1 ≈ −0.62551291, λ̃2 ≈ −0.61442057,
λ̃3 ≈ −0.59673082. Table 1 reports the results obtained.

TABLE I: COMPARISON OF THE TWO METHODS
WITH MATRIX DW2048

DW2048 Algorithm1 Algorithm3
m iter CPU err iter CPU err
20 429 26.5 1.0566e-6 78 5.9 2.3427e-7
30 35 3.7 1.2712e-7 12 1.6 1.5396e-8
40 20 4.1 2.2248e-7 4 3.1 5.1877e-10

For this example, it was shown that Algorithm 3 (weighted
harmonic Arnoldi method) worked much better than
Algorithm 1 (harmonic Arnoldi method), especially when
m was relatively small. When the dimension of the Krylov
subspace is bigger and bigger, the iterations of the two
algorithms become less and less. However, the error of the
weighted Arnoldi method is better.

Example 4.2 This example is taken from the Harwell-
Boeing Sparse Matrix Collection. We tested three matrices
BP1000, BP1400 and BP1600. They are of order 822. We
are interested in finding the three leftmost eigenpairs of each
matrix, i.e., the eigenvalues with three smallest real parts.

We ran Algorithm 1 and Algorithm 3 on this problem.
The algorithms stopped as soon as the residual norm dropped
below tol = 1e − 6. Table 2, Table 3 and Table 4 report the
results obtained.

TABLE II: COMPARISON OF THE TWO METHODS
WITH MATRIX BP1000

BP1000 Algorithm1 Algorithm3
m iter CPU err iter CPU err
20 106 5.5 1.7180e-7 72 3.6 3.7135e-10
30 7 0.7 4.8156e-7 6 0.4 7.7592e-9
40 5 0.3 5.7260e-8 3 0.2 1.4285e-12

TABLE III: COMPARISON OF THE TWO METHODS
WITH MATRIX BP1400

BP1400 Algorithm1 Algorithm3
m iter CPU err iter CPU err
30 219 9.5 3.6077e-7 32 3.2 5.4518e-8
40 8 1.7 1.2865e-7 3 1.2 1.2148e-9
50 5 1.3 2.4686e-8 2 1.1 5.8912e-12
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TABLE IV: COMPARISON OF THE TWO METHODS
WITH MATRIX BP1600

BP1600 Algorithm1 Algorithm3
m iter CPU err iter CPU err
30 211 9.7 7.3054e-7 69 4.6 1.9535e-8
40 8 1.6 1.0287e-8 5 1.2 4.3004e-11
50 3 1.1 1.3194e-8 2 1.1 1.9592e-13

For this example, it also was shown that Algorithm 3
(weighted harmonic Arnoldi method) worked much better
than Algorithm 1 (harmonic Arnoldi method), especially when
m was relatively small. When the dimension of the Krylov
subspace is bigger and bigger, the iterations of the two
algorithms become less and less. However, the error of the
weighted Arnoldi method is better.

V. CONCLUSION AND REMARKS

In this paper, we proposed a weighted harmonic Arnoldi
method for large interior eigenproblems. Numerical examples
indicate that the new method often performs much better than
the original harmonic Arnoldi method. Furthermore, we would
like to point out that the strategy presented in this paper may
also be combined with other Krylov subspace methods, such as
Jacobi-Davidson and block methods. We expect the resulting
algorithms were more powerful. Those need further research.
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