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Abstract—The problem of Entity relation discovery in structured
data, a well covered topic in literature, consists in searching within
unstructured sources (typically, text) in order to find connections
among entities. These can be a whole dictionary, or a specific
collection of named items. In many cases machine learning and/or
text mining techniques are used for this goal. These approaches
might be unfeasible in computationally challenging problems, such
as processing massive data streams.

A faster approach consists in collecting the cooccurrences of any
two words (entities) in order to create a graph of relations - a
cooccurrence graph. Indeed each cooccurrence highlights some grade
of semantic correlation between the words because it is more common
to have related words close each other than having them in the
opposite sides of the text.

Some authors have used sliding windows for such problem: they
count all the occurrences within a sliding windows running over the
whole text. In this paper we generalise such technique, coming up
to a Weighted-Distance Sliding Window, where each occurrence of
two named items within the window is accounted with a weight
depending on the distance between items: a closer distance implies
a stronger evidence of a relationship. We develop an experiment in
order to support this intuition, by applying this technique to a data
set consisting in the text of the Bible, split into verses.

Keywords—Cooccurrence graph, entity relation graph,
unstructured text, weighted distance.

I. INTRODUCTION

THE size of the information created every day is about

2·500 Petabytes1. Most of these data are unstructured

(text, images, etc.). So, one of the biggest challenge, of these

years, is the identification of underlying structures in the

unstructured data. In this case, the managing of unstructured

textual data, though if well studied, is far from being fully

covered.

Since the size of data about entities contained in

repositories, such as Wikipedia and Freebase, increases, the

focus of research about unstructured text is shifted to the

entity relation discovery. This paper attempts to address this

challenge, focusing specifically on entity relation discovery on

a corpus composed by unstructured text.

Entity relation discovery for structured data is a well

covered topic in literature, specially where the entities are
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12.5 quintillion of bytes as reported IBM in [1]

already identified [2]- [4]. In many cases machine learning

and text mining techniques are used for this goal [5], [6].

To the best of our knowledge, there are no techniques that

exploit the distance between words in unstructured text to

build a graph of the entities. Most of the techniques uses just

the binary indication of two entities in the same document to

assign a relation between them [7]. The cooccurrence of two

words (entities) can be exploited to create a graph of relations,

but the information about the distance of the words should be

preserved in order to maintain the semantic content of the

grammar text construction. Indeed implicitly this information

highlight the grade of correlation between the words because

it’s more common to have related words close each other than

having them in the opposite sides of the text.

II. RELATED WORK

The cooccurrence graphs are tools used often in literature,

in many different forms. The simplest form is the unweighted

graph where an edge is present if two words appear in the

same document and it is not present if there is no document

which both appear in. Sometimes thresholds on the number of

documents are used to reduce the noise as in [8].

Some works focused on clustering a cooccurrence graph,

where the edges are just binary indicator of the existence of

a document containing both words. In this case the noise

introduced by the statistical behaviour of the language is

reduced by the clustering action as in [9].

Other works used the weighted version of the cooccurrence

graph built on a corpus with entities as nodes. In this case the

weights on the edges are equal to the number of the documents

containing both entities. Then the graph is analysed as a social

network as in [7]. One more interesting work based on the

weighted cooccurrence graph is [10] with the goal of measure

the abstractness of a word.

One important use of the cooccurrence graph is in the field

of word sense disambiguation. Reference [11] uses unweighted

cooccurrence graphs built using a sliding window, if two

words are in the same window then there will be an edge

between them. Reference [12] extends this approach by using

a weighted graph based on the frequency of cooccurrence of

two words in all the paragraphs.

Reference [13] uses weighted cooccurrence graphs with

sliding windows of different sizes to extract keywords and

sentences from the document to summarise it. In their results

the techniques reach a state of the art precision and f-score
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but they highlight a lower recall with respect to the other

supervised techniques.

Reference [14] proposes an alternative to tf-idf score using

cooccurrence of words. Instead of using a graph, it uses a

squared matrix containing, in each cell, how many sentences

contains both words. Then, using frequency, clustering and

other techniques, it computes a score for each word.

Reference [15] uses a weighted cooccurrence graph to

estimate provinces geographical distance. The weights are

equal to the number of web pages which the provinces occur

together in. The graph is represented in form of a matrix

and then its columns are compared to compute a distance. In

similar way [16] uses a cooccurrence weighted graph based

on number of cooccurrences in web pages, in order to infer

geographical hierarchies of places’ names.

Reference [17] searches for visual words (recurrent

structures) in images. These visual words are used as entities

in a cooccurrence graph and each image is used as a document.

The graphs are, then, compared to re-identified the same

person in two different images.

A more complex way to build a semantic graph, in order to

cluster by topic, is shown in [18] after the algorithm proposed

in [19] called ICAN method. While in [20] the cooccurrence is

replaced with a dimensionality reduction of the text by using

a random indexing technique, in order to cluster topics.

III. APPLICATIONS

A weighted graph of words (or entities) can be exploited in

many fields of application. It is possible to use it to discover

changes in human-written ontologies. In this case a simple

comparing between edges can highlight both new or previously

undiscovered relations between entities. For instance in the

field of medicine, where many handwritten ontologies are still

alive, it could be used to analyse new articles to help the

experts to find new relations.

Another field of application could be the identifying of

aliases of entities [21]. In this case, a cooccurrence graph,

could indicate two entities which aliases one of the other

simply seeing to their neighbourhoods. Indeed, two aliases

of the same entities, are probably used with the same set of

words, so to identify two aliases it is sufficient to identify two

nodes with the same distribution of weights among the same

set of nodes.

One more field of application is the automated data cleaning

in text [22]. Many texts contain references to different entities

using the same abbreviation (Donald L. White and Donald

E. White, both of whom are referred to as D. White, as

remarked in [22]). Using a cooccurrence graph could help to

disambiguate the references comparing the other words in the

document to compare their distribution with the relations in

the graph.

Reference [23] uses entity relations from unstructured text

to analyse and link entities in emails’ text. The relations

are, then, compared with other public sources (for instance

LinkedIn) to build a network given from the union of

unstructured and structured data.

IV. OUR PROPOSAL

Our proposal is to build a cooccurrence graph with weights

based on the distance between words in text. Each node is

a word and each edge weight is the score assigned to the

cooccurrence of the two words connected. A high score could

be obtained in different ways: two words often close each other

in different documents, two distant words very often in very

many documents.

The resulting graph is a representation of the relations

between words in text which keeps the information about the

distance between words. This information is bounded to the

semantic of the phrases, and so it is more complete than the

counting for how many documents contain the same pair of

words.

The importance of weighting the distances is even more

evident if we consider a “long” document. In this case the

number of unweighted cooccurrences is very high, but the

relevance of these is questionable. Even using a window

(unweighted version), there is a trade off between a wide and

a short size. A short one may miss many cooccurrences, and a

long one may fail to distinguish between dramatically different

“closeness” degrees.

A. Algorithm

Without loss of generality, we assume that the document

in input is already tokenized by words. For each word, the

scores between that word and all the others in the window are

computed. Using a structure based on hash, the sum of the

scores for each pair of words is cached, to keep reading and

writing constant in time.

Algorithm 1 Weighted cooccurrence Graph

function WEICOOCGRAPH(words, weights, threshold)
graph ← new Graph()
scores ← new Dictionary()
for i = 0; i < words.size(); i++; do

left ← words[i]
maxj ← min(i+ weights.size() + 1, words.size())
for j = i+ 1; j < maxj; j ++; do

right ← words[j]
l ← min(left, right)
r ← max(left, right)
k ← j − i− 1
weight ← weights[k]
scores[l, r] ← scores[l, r] + weight
if l �= r & scores[l, r] > threshold then

graph[l, r] ← scores[l, r]
end if

end for
end for
return graph

end function

Algorithm 1 (Weighted Cooccorrence Graph) shown above

has cost of O(k ·n) in time, where n is the size of the scanned

text and k is the size of the sliding window. The required space

is of O(k · m), where m = O(min{kn,w2}) is the number

of relationship collected while running the algorithm, and w
is the number of entities. In practical terms, we get a running

time which is essentially linear in the size of scanned text

(the input), and a space which is linear in the size of the total
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Fig. 1 A window of entities. Let us consider the entities A, B, C, D, E, and
a window of size 4. Cooccurrence (A,B) has weight W1, (A,B) has

weight W2, (A,B) has weight W3. Since the size of the window is 4, then
A and E are considered non-cooccurrent
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Fig. 2 Weight function examples. Weighted functions should be (strictly)
descending. Each field of application could have a weight function that best

fits the semantic in the text

number of retrieved cooccurrences. The resulting cooccurrency

graph (the output) might have a smaller size due a threshold

greater than zero.

B. Window and Weights

The weights are placed in an array starting with index 1.

Each cell contains the weight defined for the distance equal

to its index. The weights should be (strictly) decreasing to

maintain the information about the distance between words.

The document is analysed by using a sliding window of

words. Inside the window, then, the weights are computed on

the basis of the first left word with respect to the others as

showed in Fig. 1.

The size of this window and the weight for each position

are parameters of the algorithm. The bigger is the window and

the more connected is the resulting graph. Indeed, a window

of size 10 means that all the words that are distant more than

10 spots will be ignored while computing the score.

The function used to compute the weights assigns a grade

of importance to the relations based on the distance between

words. So each field of application could gain benefits from a

different weight function. Some examples of weight functions

are showed in Fig. 2.
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Fig. 3 In this graph three different weight functions are compared based on
the resulting edges given a fixed threshold. Each point is an experiment on

the verses of the bible as described in Section V. The X axis is the
threshold and the Y axis is the number of edges of the resulting graph. All

the experiments used a window of size 31

C. Threshold

An edge will be added to the graph only if the score for

the relation is bigger than the threshold. This means that the

number of edges in the resulting graph depends on the value

of the threshold. Since the score is always positive and its

maximum value for a document is known, then the threshold

can be expressed as a value between 0 and 1. This value will

be multiplied for the max score computed as in Section IV-D.

This information can be useful to understand the coherence

of the weight function with respect to the corpus. Indeed, if the

number of edges doesn’t change when the threshold changes,

then the weight function could have values too low in the tail

of the window. Comparing them as in Fig. 3 could give also

information about the corpus. In the figure is clear that almost

all the edges are from low score edges, so there are no strong

relations in this corpus.

D. Max Score

The maximum cooccorrence score for two words, is given

by a document composed only by the two words always one

after the other. For instance, two words: A and B, would have

the maximum score in a document as the following:

A B A B A B A B A B A B A B . . .

In this case, the maximum score is equal to

max score =
∑

i

(|D| − i) ·Wi (1)

where D is the document as vector of words and W is the

vector of weights.

E. Graphs Merging

Since a corpus is composed by many documents, the result

of this method would be a series of graphs. To have a single

graph for the whole corpus, the graphs should be merged in
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one. The resulting graph should contain the union of the nodes

sets and the union of the edges sets for all the graphs. Except

that an edge could be in many graphs, each with a different

value.

Even if it is the same edge, the information about which

graph contains the edge could be important to perform other

analysis. But keep the distinction about only some edges

ignoring the others will bring to have a partial information.

So the safest procedure is to keep both the original graphs

and the global one.

The merging of the graphs is performed just adding the

weights for the edges in more than one graph as in algorithm 2.

Algorithm 2 Graph merging

function GRAPHMERGE(graphs)
merged ← new Graph()
for all g ∈ graphs do

for all e ∈ g.edges do
l ← e.in
r ← e.out
if e /∈ merged then

merged[l, r] ← 0
end if
merged[l, r] ← merged[l, r].weight+ e.weight

end for
end forreturn merged

end function

F. Digraph

An important information about words relation is the order

of them in the document. There is a big difference between

“The boy also eats the apple” and “The apple also eats the
boy”, but without considering the order the resulting graph

would be the same (except that the edges with also). To

maintain the information about the apples, usually to be eaten

instead to eat, the cooccurrence graph should be a digraph.

In this case, the edge exits from the left word and enters

to the right word. This means that, in the general case, there

would be two edges between two words. If only one edge is

present between the words A and B, then these two words are

always in the same order in the corpus.

The only difference with respect to the previous algorithm

is the sorting of the words. Indeed, the edge is just saved as

the order it is encountered in the text.

This type of relation can be used to infer many types of

information. For instance, if there exists an edge with a high

score between two words, but it doesn’t exist the inverse edge,

then the two words could be a composite name (for instance

Coca Cola) or maybe part of a figure of speech (The white
house means the USA government).

V. AN EXAMPLE

We applied this method on the verses of the bible. We used

as nodes the major characters of the bible [24] ignoring all the

other words in the documents. Starting from a JSON format

[25] we create both versions of the graphs:

• weighted graph based on binary presence of the words

• weighted graph based on the distance of the words

Algorithm 3 Weighted cooccurrence DiGraph

function WEICOOCDIGRAPH(words, weights, threshold)
graph ← new DiGraph()
scores ← new Dictionary()
for i = 0; i < words.size(); i++; do

left ← words[i]
maxj ← min(i+ weights.size() + 1, words.size())
for j = i+ 1; j < maxj; j ++; do

right ← words[j]
l ← left
r ← right
k ← j − i− 1
weight ← weights[k]
scores[l, r] ← scores[l, r] + weight
if l �= r & scores[l, r] > threshold then

graph[l, r] ← scores[l, r]
end if

end for
end for
return graph

end function

Fig. 4 Cooccurrence graph based on counting verses containing the entities
of the bible. See detail in Fig. 5

All the graphs’ figures was made using Gephi [26] with

OpenOrd clustering. The overall pictures uses clustering with

750 iterations, while detail pictures uses clustering with 2000

iterations.

A. Standard Binary

In this type of graph, the weight of the edges is equal to the

number of documents containing both words as defined in [7].

The result is already a merged graph for all the verses in the

bible, so no other merging step was performed. The resulting

graph is composed by 180 nodes and 897 edges.

The overall structure is showed in Fig. 4. In this

representation we can see 2 big clusters (showed in detail in

Fig. 5), 7 little clusters and many other isolated nodes.
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Fig. 5 Two clusters of the cooccurrence graph based on counting verses
containing the entities of the bible

Fig. 6 Cooccurrence graph of entities in the bible, based on a sliding
window of size 31 with weight function 1/x and threshold 0.0005. See

detail in Fig. 7

B. Weighted Window

In this version of the graph we have iterated the algorithm 1

on each verse of the corpus, creating a cooccurrence graph

for each verse. We used a window of 31 words with weights

computed as w(d) = 1/d (where d indicates the distance

from the left word) and a threshold of 0.0005% of the max

score. Then we merged the graphs using the algorithm 2. The

resulting graph is composed by 162 nodes and 580 edges.

The overall structure is showed in Fig. 6. In this

representation we can see 2 big clusters (showed in detail in

Fig. 7), 7 little clusters and many other isolated nodes.

C. Comparison of the Graphs

Comparing the graphs we can see many properties that differ

in a sensible manner as shown in Table I. In Table II we can

see the dimension of the graphs generated by both methods

depending on the division of the text. The number of edges

are lesser for the weighted window graphs for each division,

keeping the weighted window graphs sparser then the binary

graphs.

(a) (b)

Fig. 7 Two clusters of the cooccurrence graph of entities in the bible, based
on a sliding window of size 31 with weight function 1/x and threshold

0.0005. (a) This cluster represents characters in New Testament, where the
biggest edges are: Jesus - Peter and Jesus - Simon. (b) This cluster

represents characters in Old Testament, where Judah acts as a “central node”

TABLE I
PROPERTIES OF COOCCURRENCE GRAPHS

Property Binary Window
Average degree 9.967 7.16
Network diameter 7 8
Graph density 0.056 0.044
Modularity 0.582 0.666
Connected components 2 5
Average clustering coefficient 0.566 0.536

Comparing, instead the degree of the nodes (as shown in Figs.

8 and 9) the weighted window graph seems to keep the basic

structure of the standard binary version. Analysing both the

properties and the degrees graphs, the weighted window graph

seems to be a more compact version of the standard binary

even if the basic structure is maintained.

VI. CONCLUSION

In this paper we present a technique to extract relational

information among entities from textual unstructured data

(possibly textual documents, or text streams). Following

previous works in this area, the idea is to extract word

cooccurrence statistics from text, building up a cooccurrence

graph. The new idea here is to “weight” distances between

words within a sliding window running over the text to be

analysed.

Based on the preliminary experiments reported in this paper,

the resulting cooccurrence graph contains nearly the same

information (number of cooccurrence arcs) of using a simple

sliding window, which - in our approach - is the special case

where the distance function is a flat constant within the sliding

window. But, generalizing over the unweighted case, in our

case we have the flexibility of tuning a weight function which

is better suited to the nature of the unstructured data, without

any loss in performances with respect a “flat” sliding window.

The running time is essentially linear in the size of scanned

text (the input), and a space which is linear in the size of

the total number of retrieved cooccurrences (the cooccurrency

graph - i.e., the output - in case of a threshold 0). Hence, this

algorithm has performances well suited to scan optimally high

TABLE II
SIZE (NODES AND EDGES) OF COOCCURENCE GRAPHS

Division Binary Window
Nodes Edges Nodes Edges

Chapters 185 4206 127 172
Verses 180 897 162 580
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Fig. 8 Distribution of the degree of the nodes for the two cooccurrence
graphs computed in Section V. On the X axis there is the degree of a node.

Both distributions: standard binary (std) and weighted window (wei) are
plotted

Fig. 9 Scatterplot of the degrees of the entities in the cooccurrence graphs
computed in Section V. Each point is a node, in the X axis it is represented
its degree in the standard binary graph, while in the Y axis it is represented

its degree in the weighted window graph

volume of unstructured data, even from massive text streams,

scanned just once, with a memory footprint depending on the

“vocabulary”, and no dependence on the size of the scanned

text.

Based on the performance figures and the flexibility of

the proposed data structure, in further work we propose

to explore the possible applications of this approach,

based on a weighted-distance sliding window, to several

contexts in information retrieval and knowledge management,

such as: search engine empowerment, thesaurus extraction

and verification, ontology maintenance, sentiment analysis,

information extraction and document classification.
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