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Abstract—This paper describes a novel approach for deriving 

modules from protein-protein interaction networks, which combines 
functional information with topological properties of the network. 
This approach is based on weighted clustering coefficient, which 
uses weights representing the functional similarities between the 
proteins. These weights are calculated according to the semantic 
similarity between the proteins, which is based on their Gene 
Ontology terms. We recently proposed an algorithm for identification 
of functional modules, called SWEMODE (Semantic WEights for 
MODule Elucidation), that identifies dense sub-graphs containing 
functionally similar proteins. The rational underlying this approach is 
that each module can be reduced to a set of triangles (protein triplets 
connected to each other). Here, we propose considering semantic 
similarity weights of all triangle-forming edges between proteins. We 
also apply varying semantic similarity thresholds between 
neighbours of each node that are not neighbours to each other (and 
hereby do not form a triangle), to derive new potential triangles to 
include in module-defining procedure. The results show an 
improvement of pure topological approach, in terms of number of 
predicted modules that match known complexes.  
 

Keywords—Modules, systems biology, protein interaction 
networks, yeast.  

I. INTRODUCTION 
OLECULAR biology is becoming a highly modular 
science where functional modules are considered to be a 

critical level of biological organization. The term “module”, 
as understood in molecular biology, was originally defined as 
a discrete unit with a function that is separable from those of 
other modules [1]. Furthermore, modularity refers to clusters 
of elements that work in a co-operative fashion to achieve 
some defined function. Protein complexes constitute one 
example type of module, since the proteins within a complex 
interact functionally and physically to form a robust unit, 
which in its turn carries out some biological function [2].  

The clustering coefficient measures the local cohesiveness 
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around a node, and it is defined, for any node i, as the fraction 
of neighbours of i that are connected to each other [3]. Simply 
stated, the clustering coefficient clust(i) reflects the presence 
of ‘triangles’ which have a corner at i (see the triangle with 
dashed sides in Fig. 1). The clustering coefficient is also 
useful in measuring the global density of triangles in the 
network as a whole. In previous work, we have compared the 
clustering coefficient with its weighted counterpart, to 
characterize global properties of the network [4]. Weight of 
the link between a pair of proteins reflects the functional 
strength of the interaction, defined as semantic function 
similarity between those proteins. Here, we apply a novel 
approach of combining functional information with 
topological properties of the network to reveal modular 
formations.  

 
Fig. 1 The clustering coefficient clust(i) corresponds to the number 

of “triangles” (see triangles with dashed sides) incident to node i 
(filled circle) 

 
We define modules as dense regions of the PIN (Protein 

Interaction Network), which contain functionally related 
proteins. In SWEMODE [4], we proposed semantic function-
weighted clustering coefficient, which takes into consideration 
the functional similarity between interacting proteins. In this 
study we employ a novel approach for weighting nodes, by 
considering semantic similarity weights of all of the triangle-
forming edges. To our best knowledge, there exist no other 
methods for identifying modules with semantic similarity-
weighted clustering coefficient, apart from our earlier 
publication [4].  

II. RELATED WORK 
Although the clustering coefficient is a good measure of the 

density of interactions in a protein interaction sub-graph, it is 
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strongly dependent on the size of the sub-graph. This makes it 
very difficult to use clustering coefficient to discern sub-
graphs for which the density is statistically significant. Spirin 
and Mirny [2] observed that the majority of cliques of size 
four or greater are statistically significant in protein networks 
compared with random graphs. Such enrichment in the 
number of cliques reveals essential modularity in the network 
structure, suggesting that many of these protein interactions 
are responsible for the formation of complexes and functional 
modules [2]. 

Several other methods of network clustering have been 
applied to reveal modular organization in PINs.[5-7] 
Furthermore, an algorithm for Molecular COmplex DEtection 
(MCODE), based on a local network density function named 
core-clustering coefficient, has been applied earlier to find 
clusters corresponding to molecular complexes [8]. However, 
those methods have mostly been focused on topological 
properties of the network. On the other hand, there are 
successful approaches for functional grouping of genes based 
solely on their functional annotation from Gene Ontology [9]. 
We developed a module-identifying algorithm, SWEMODE 
(Semantic WEights for MODule Elucidation) [4], based on a 
weighting scheme according to semantic similarity between 
the proteins. SWEMODE takes advantage of two aspects of 
functional annotation encoded in Gene Ontology, molecular 
function and biological process, and combines these with 
topological properties of the protein network. In this work, we 
develop a weighted counterpart, i.e. weighted core-clustering 
coefficient, which takes into consideration functional weights 
of all triangle forming edges. Weighted clustering coefficient 
that we employ here has been proposed in [10] for 
characterizing weighted financial and metabolic networks 
with motif intensity scores. We employ this clustering 
coefficient in a novel way by combining it with semantic 
similarity weights. K-cores have been proposed earlier for 
detection of protein complexes from protein interaction 
network.[8, 11] It has also been found recently that proteins 
that participate in central cores have more vital functions and 
higher probability of being evolutionary conserved than the 
proteins that participate in more peripheral cores [12], which 
motivated the use of this aspect in SWEMODE.  

III. METHOD 

A. Protein Interaction Network 
Information on protein interactions was downloaded from 

the Database of Interacting Proteins (DIP1),[13] which 
contains experimentally determined interactions between 
proteins in Saccharomyces cerevisiae, the majority of which 
were identified with high-throughput Y2H.[14] In Y2H 
technology, a bait protein, fused to a DNA-binding domain, is 
used to attract a potential binding protein (prey), fused to a 
transcriptional activation domain. If the bait and the prey 
protein interact, their DNA-binding domain and activation 

 
1 http://dip.doe-mbi.ucla.edu 

domain will combine to form a transcriptional activator, 
resulting in the expression of a reporter gene.  

B. Semantic Similarity Weights 
The Gene Ontology (GO)[15] is becoming a de facto 

standard for annotation of gene products. Several methods 
have used GO to predict the function of hypothetical proteins 
from protein-protein interaction graphs [16, 17]. We use this 
measure to assign two weights to each protein-protein 
interaction, corresponding to semantic similarities between the 
interacting proteins. One weight is based on annotation from 
the GO sub-ontology for molecular function, and the other on 
the sub-ontology covering biological process.  

We calculate semantic similarity using the information 
theoretic measure originally proposed by Lin,[18] which is 
here calculated using the GO terms assigned to the proteins in 
the Saccharomyces Genome Database (SGD2).[19] To 
calculate the semantic similarity between two gene products, 
the probability of each term assigned to any of the gene 
products is first derived. This probability is calculated by 
counting the number of times the term or any of its 
descendants occur in SGD annotations, divided by the total 
number of GO term annotations in SGD. The probability 
increases as we move towards the root of GO, has probability 
1. Given these probabilities, there are several ways to 
calculate semantic similarity [18, 20, 21]. 

In order to calculate the similarity between two proteins i 
and j, we need to calculate the similarity between the terms 
belonging to the term sets Ti and Tj that are used to annotate 
these proteins. We use Lin’s similarity measure for calculating 
term-term similarity. Given the ontology terms tk ∈ Ti and tl ∈ 
Tj, the semantic similarity is defined as: [18] 

 
)(ln)(ln/),(ln2),( lklkmslk tptpttpttsim +=        (1) 

 
where p(tk) is the probability of term tk and pms(tk,tl) is the 
probability of the minimum subsumer of tk and tl, which is 
defined as the lowest probability found among the parent 
terms shared by tk and tl.[22] We use the average term-term 
similarity [22] since each protein can be annotated by several 
terms, and since we are here interested in the overall similarity 
between the pair of proteins rather than between pairs of 
individual ontology terms. Given two proteins, i and j, with Ti 
and Tj containing m and n terms, respectively, the protein-
protein similarity is defined as the average inter-set similarity 
between terms from Ti and Tj: 

 

∑
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where ),( lk ttsim is calculated using (1). 

 
2 http://genome-www.stanford.edu/Saccharomyces/ 
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C. Clustering Coefficients 
Consider an undirected protein-protein interaction graph 

with binary weights { }1,0=ijw  where 1 denotes an interaction 

and 0 denotes non-interaction. The clustering coefficient for 
node i is defined as [3]:  
 

)1(/2)( −= iii kkniclust                          (3) 
 

where ni is the number of triangles incident to node i, and k is 
the number of direct neighbours of node i. This measure, 
although providing a signature of structural organisation of 
networks, is based solely on topological grounds. However, it 
has been shown that inclusion of weights may change our 
view of structural organisation [4, 23] 

Recently, a few extensions of the topological clustering 
coefficient have emerged for weighted networks. The 
weighted clustering coefficient, proposed by Barrat et al. [23], 
has been applied to two types on networks, the world-wide 
airport network and the scientist collaboration network. It is 
defined as [23]: 
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where ∑=

j ijiji aws  denotes the strength of nodes in terms 

of the total weight of their interactions, and aij is an element in 
the underlying adjacency matrix. We introduced the notion of 
combining semantic similarity weights with topological 
protein-protein interactions by using this measure for the 
purpose of identifying modular formations in protein networks 
[4]. Hence, the weight wij equals semantic similarity ssij, and 
strength s is defined as functional strength of a node, i.e. the 
sum of all semantic similarities between a protein and its 
immediate neighbours. 

According to the definition, )(iwclustB  only considers the 
weights of the triangle forming edges adjacent to node i, but 
not the edges connecting the neighbours of i. 

There are several reasons for considering all triangle-
forming edges in the analysis of protein interaction networks. 
Data obtained from high-throughput Y2H screens is prone to 
errors, and may contain large numbers of false positives. 
Furthermore, as mentioned earlier, small cliques, (see 
examples of such graphs in Fig. 2) are more likely to emerge 
by chance than large ones [2]. However, as the weighted 
clustering coefficient by Bader et al. [8] does not differ from 
the general clustering coefficient for small sub-graphs, we 
have employed a novel approach for combining semantic 
similarity weights with topological information, which 
considers all three edges of the triangles. 

The approach is based on the weighted clustering coefficient 
wclustO(i) which has been proposed in [10] for characterising 
weighted financial and metabolic networks with motif 
intensity scores. We propose combining the semantic 

similarity weights 

clust(i) = 1
wclustO(i) = 0.6

w = 0.6  protein-protein interaction
w = 0.2  protein-protein interaction

clust(i) = 1
wclustO(i) = 0.42

clust(i) = 1
wclustO(i) = 0.29

clust(i) = 0
wclustO(i) = 0

i i i i

(a)

w = 0.8  semantic similarity interaction

(b)

i i

wclustO(i) = 0.19 wclustO(i) = 0.41

 
Fig. 2 Illustration of differences between clustering coefficients 

 
between protein-protein interactions with an underlying 
adjacency matrix, which may vary depending on different 
semantic similarity thresholds. The original definition by [10] 
has been adopted accordingly: 
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where ssij is semantic similarity as defined in (2). The 
properties of a graph are expressed by its adjacency matrix aij, 
the entries of which are assigned with 1 if there is an edge 
between nodes i and j (corresponding to a protein-protein 
interaction), otherwise 0.  

The advantage of weighted clustering coefficient compared 
to its topological counterpart is illustrated in Fig. 2. Fig. 2b 
shows gradually decreasing weights between triplets of 
proteins. The values of general clustering coefficient clust(i) 
drop from 1, which is the maximum value, to 0 for the fourth 
triplet, where there is no link between neighbours adjacent to 
i. Furthermore, for a node i, if there is no edge between a pair 
of neighbours of i, and their semantic similarity exceeds a 
given threshold t, we consider this as an edge. For example, in 
Fig. 2b, there is a missing edge between a pair of neighbours 
of i, and the semantic similarity (see stretched line) between 
those proteins is 0.8. By setting t to 0.5, for example, the 
adjacency matrix is assigned with 1, assuming an edge 
between those proteins. This modification results in a 
considerable increase of wclustO(i) (from 0.19 to 0.41 in the 
example). 

It should also be noted that we calculate two semantic 
similarity values for each node, one based on GO molecular 
function, and the second based on GO biological process. We 
then use the higher of the two as the final weight of the 
interaction. This gives the added advantage of taking both 
aspects into consideration. 

D. The Algorithm for Module Identification 
The aim of SWEMODE is to identify highly interconnected 

sub-graphs with high functional homogeneity. We call those 
sub-graphs core modules. In previous work, [8] Bader and 
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Hogue developed an algorithm for finding complexes in large-
scale networks, called MCODE, which is based on the 
weighting of nodes with a core-clustering coefficient, which is 
the density of the highest k-core of the closed neighbourhood 
N[i]. The highest k-core of a graph is the central most densely 
connected sub-graph. In previous work, we have proposed an 
alternative method, called SWEMODE (Semantic WEights for 
MODule Elucidation), that is used for deriving functional 
modules, based on the weighted cohesiveness of the sub-
graphs. [4] Here, we use a novel weighting scheme, based on 
weighted core-clustering coefficient of node i, 
core_wclustO(i), which is defined as the weighted clustering 
coefficient of the highest k-core of the closed neighbourhood 
N[i]. The use of weighted core-clustering, instead of weighted 
clustering coefficient, is advantageous since it amplifies the 
importance of tightly interconnected regions, while removing 
many less connected nodes that are usually present in protein 
neetworks.[8] The relative weight assigned to node i, based on 
this measure, is the product of the weighted core-clustering 
coefficient and the highest k-core level of the immediate 
neighbourhood of i.  

The second stage of the algorithm, i.e. core module 
prediction, is similar to the molecular complex prediction step 
of MCODE.[8] It uses the node weights, seeds a module with 
the highest weighted node, and then traverse the immediate 
neighbourhood of the seed node, identifying neighbours 
whose weights satisfy the node weight percentage (NWP) 
requirement in the module. This module prediction procedure 
is repeated using the node with the second highest weight as 
seed for a new module, and so on until the end of the node 
ranking. The requirement for inclusion of the neighbours in a 
module is that their weights are higher than a threshold, which 
is a given NWP of the seed node.[8] At this stage, ones the 
node has been visited and added to the complex, they can not 
be added to other complex.[4] However, in post-processing 
step, some overlap is allowed. 

In a post-processing step, modules may be filtered 
according to their connectivity, i.e. the user can choose to 
remove modules both before and after applying so called 
“fluffing” step. We perform filtering of all modules containing 
less than 2 elements before and after fluffing. Fluff parameter 
that is used to introduce overlapping modules, and can vary 
between 0.0 and 1.0. [8] For every node in the module, its 
immediate neighbours are added to the module, if they have 
not been visited and if their neighbourhood weighted 
cohesiveness is higher that the given fluff threshold f. Fluffing 
step has been applied both on filtered modules and modules 
where no filtering parameter was applied. Analysis is based on 
the results from approximately 440 different parameter 
settings. 

IV. RESULTS 

A. Evaluation of SWEMODE Using MIPS Complexes 
SWEMODE was used to predict functional modules in the 

CORE data set. Resulting modules were then compared to the 

MIPS data set of known protein complexes. The MIPS3 
protein complex catalogue is a curated set of manually 
annotated yeast protein complexes derived from literature 
scanning. After removal of 44 complexes that contain only 
one member, 212 complexes were left in the data set. MIPS 
complex data set is however incomplete, which may have 
affected the presented outcome in terms of the number of 
matched complexes. For example, the complex containing 
Lsm-proteins, which has the highest rank in our evaluation 
(see section Module Ranking with Density Score), is not 
present in the MIPS complex data set, although it is a well-
known complex.[24] Furthermore, a module may consist of a 
protein complex and some additional proteins that interact 
with the complex to perform a distinct function. Even though 
the MIPS complex data set is incomplete, it is currently the 
best available resource for protein complexes that we are 
aware of.  

SWEMODE was run using the weighting scheme 
core_wclustO(i) based on the combination of two GO aspects, 
GO molecular function and GO biological process, over a 
range of 20 NWP parameter values (0 to 0.95 in increments of 
0.05). Fluff threshold parameter was also varied between 0 
and 1 (in increments of 0.1). In previous work, it has been 
found that combination of GO biological process and GO 
molecular function was most suitable for prediction of 
modules [4], which is why we have not considered each 
aspect separately here. 

To evaluate the performance of SWEMODE and choose the 
best parameter settings when using core_wclustO(i), we used 
the overlap score [8]. Overlap score, O, is defined as [8]: 

 

jijiij MMMMO
2

∩=                       (6) 

 
where Mi is the predicted module, and Mj is a module from the 
MIPS complex data set. The O measure assigns a score of 0 to 
modules that have no intersection with any known complex, 
while modules that exactly match a known complex get the 
score 1. The measure is not so sensitive to a size of modules, 
meaning that predicted module that fully overlap with a MIPS 
complex, but is much larger or smaller than MIPS complex 
will get a low O. The best choice of parameters for 
SWEMODE is the one that predicts the largest number of 
modules that match the largest number of MIPS protein 
complexes. Hence, the overlap score may be seen as a 
measure of biological significance of the module prediction, 
assuming that the set of complexes obtained from MIPS is 
biologically plausible. 

We have first analysed the effect of using core_wclustO(i) 
with varying semantic similarity threshold t on the number of 
predicted and matched modules. We tested following 
thresholds t on semantic similarity values: 0.1, 0.3, 0.5, 0.7, 
and 0.9 (Fig. 3). The numbers of matches at each threshold 
level are not based on the best parameter setting, but are the 

 
3 http://mips.gsf.de/proj/yeast/ 
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average numbers from 440 different parameter settings. As O 
increases, fewer predicted complexes match known 
complexes. 

 
Fig. 3 The effect of varying semantic similarity threshold on the 

number of matched complexes 
 

The best result is obtained at lowest threshold value 1.0=t , 
implying that even low semantic similarity between proteins is useful 
to consider in the weighting scheme presented here. 

Furthermore, we compared the best result from core_wclustO, 
when threshold was varied, with two other weighting 
schemas, core_clust and core_wclustO(top). As mentioned 
earlier, core_clust is topological core clustering coefficient, 
whereas core_wclustO(top) corresponds to wclustO applied to 
topological network, when no semantic similarity thresholds 
were considered. The best result is obtained with core_wclustO 
(Fig. 4). Also core_wclustO(top) is considered to perform 
better then core_clust, in spite of the fact that this topological 
weighting schema results in larger number of modules. With 
increasing overlap score threshold (O = 0.2), fewer modules 
pass the thresholds compared to the other schema, meaning 
that biological significance of those modules may be lower. 

B. Module Ranking with Density Score 
Further evaluation of the obtained modules, was focused on 

choosing best parameter setting by using core_wclustO, which 
is the one that resulted in the largest number of modules that 
match MIPS complexes. The parameter setting that gave best 
result is when we did not perform filtering in prior to fluffing, 
and fluff parameter f was higher than 0, meaning that all 
neighbours of the original modules have been added to 
modules, no matter if they belong to several modules. PWD 
was set to 0.95. This parameter setting resulted in 521 
modules with connectivity k ≥ 2. 

The obtained modules are ranked according to the density 
score. Given a module graph G = (V, E), where the number of 
proteins is denoted by n and the number of interactions is 
denoted by m, the density is defined as m divided by the 
theoretical maximum number of edges possible for the module 
graph, mmax,[8] defined as 2)1( −nn . 

 
Fig. 4 Comparison between topological weighting scheme, 
core_clust, its weighted analogue core_wclustO(top) and 

core_wclustO when semantic similarity threshold t was set to 0.1 
 
Table I shows a list of the 10 top-ranked modules. The 

score in column five corresponds to the density of the module 
multiplied with its number of members. In this way, larger and 
more densely connected modules are given higher scores. 

The functional module with highest rank corresponds to the 
Lsm complex. All eight Lsm-proteins are correctly predicted 
by the algorithm. Sm-like (Lsm) proteins participate in a 
variety of RNA processing events. For example, Lsm1-Lsm7 
are involved in mRNA degradation and splicing.[25] Besides 
Lsm-proteins, this module contain Pat1, which is a decapping 
activator that interacts with Lsm1-Lsm7. In this way, the Lsm-
proteins may promote mRNA decapping, which is necessary 
for mRNA degradation.[26] Other examples of identified 
complexes are Oligosaccharyl Transferase Complex[27] (rank 
6) and pore complex (rank 2). 

V. DISCUSSION AND CONCLUSIONS 
We have proposed a method for analysis of protein networks 

using a measure based on a novel combination of topological 
and functional information of the proteins. The algorithm 
takes advantage of this integrated measure to identify locally 
dense regions with high functional similarity. In the 
evaluation of the method, we found modules with high 
functional homogeneity, in many cases corresponding to sets 
of proteins that constitute known molecular complexes and 
some additional interacting proteins which share high 
functional similarity with the complex but are not part of it. 
Together, such sets of interacting proteins form functional 
modules that control or perform particular cellular functions, 
without necessarily forming a macromolecular complex. Thus, 
the method may be used for the prediction of unknown 
proteins which participate in the identified modules. We have 
demonstrated that adding additional knowledge by 
considering semantic similarity between the proteins, even at 
low similarity generates modules that are more biologically 
plausible that those generated solely based on topological 
information. 

It is also important to mention the MIPS database that we 
used in our evaluation covers complexes rather than modules, 
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and it may therefore only partially describe what we expect to 
see in the results from a module prediction method. A module 
may include more than just a complex. MIPS is currently the 
best source available, but it can not be considered a 
benchmark in its current form. We hope that future 
applications of this work will contribute to developing a 
benchmark which can be used for a more thorough evaluation 
of prediction accuracy. Future work will also include 
investigating other weighting functions, for example based on 
the GO cellular component annotation. We will also compare 
our method more systematically with other methods for sub-
graph identification. 
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TABLE I 
MODULES WITH TOP 10 RANKS 

Rank # proteins Protein Names Density aScore bCellular component 

1 9 Lsm3, Lsm2, Lsm8, Lsm5, Lsm6, Lsm7, Lsm4, Lsm1, Pat1 1.00 9.00 Ribonuclopprotein complex 
2 15 Kap95, Nup145, Srp1, Gsp1, Nup100, Nup116, Nup1, Nup57, 

Nup42, Nup49, Nup60, Nup2, Pse1, Crm1, Msn5 
0.59 8.86 Pore complex 

3 9 Bet1, Ret2, Bos1, Cop1, Sec21, Sec22, Sec26, Sec27, , Ret3  0.92 8.25 COPI vesicle coat 
4 12 Rpn11, Rpn12, Rpt3, Ecm29, Rpt2, Rpt6, Rpt1, Pre1, Rad23, 

Pre5, Rpt2, Rpt5 
0.67 8.00 Proteasome complex 

5 9 Taf9, Gcn4, Ngg1, Taf1, Ada2, Taf5, Taf6, Spt7, Taf10 0.86 7.75 SLIK complex 
6 8 Ost5, Ost2, Ost3, Ost1, Ost4, Stt3, Swp1, Wbp1 0.96 7.71 Oligosaccharyl transferase complex 
7 17 Mak21, Mak5, Rlp7, Nop4, Has1, Nop7, Cic1, Nop15, Rrp12, 

Ytm1, Erb1, Nog1, Nop2, Puf6, Tif6, Nsa2, Sda1 
0.45 7.63 Nucleolus 

8 9 Caf130, Not3, Ccr4, Caf40, Cdc39, Mot2, Not5, Pop2, Taf1  0.83 7.50 CCR4-NOT complex 
9 9 Mpe1, Cft2, Pap1, Pta1, Ref2, Pfs2, Pti1, Pcf11, Rna14 0.81 7.25 mRNA cleavage factor complex 
10 17 Rpn10, Rpt3, Rad23, Ecm29, Pre1, Pre2, Pre4, Pre5, Pre6, Pre8, 

Pre9, Pup3, Rpt2, Rpt4, Rpt6, Scl1, Rpt1 
0.43 7.25 Proteasome complex 

a Density multiplied with number of members of the module, b Most significantelly shared GO term from sub-ontology describing cellular component. 


