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Abstract—Although the level crossing concept has been the subject
of intensive investigation over the last few years, certain problems of
great interest remain unsolved. One of these concern is distribution of
threshold levels. This paper presents a new threshold level allocation
schemes for level crossing based on nonuniform sampling. Intuitively,
it is more reasonable if the information rich regions of the signal
are sampled finer and those with sparse information are sampled
coarser. To achieve this objective, we propose non-linear quantization
functions which dynamically assign the number of quantization levels
depending on the importance of the given amplitude range. Two new
approaches to determine the importance of the given amplitude seg-
ment are presented. The proposed methods are based on exponential
and logarithmic functions. Various aspects of proposed techniques are
discussed and experimentally validated. Its efficacy is investigated by
comparison with uniform sampling.

Keywords—speech signals, sampling, signal reconstruction, asyn-
chronous delta modulation, non-linear quantization.

I. INTRODUCTION

IN recent years, there has been considerable interest in level
crossing algorithms for sampling continuous time signals.

Driven by a growing demand for intelligent and high speed
analog-to-digital converter (ADC) with low-power processor,
increasing efforts have been made to improve level crossing
based sampling techniques. An asynchronous level crossing
sampling scheme records a new sample whenever the source
signal crosses a threshold level. Consequently, more samples
are recorded during fast changing intervals and fewer samples
are recorded during relatively quiescent intervals. As a result,
the signal is sampled nonuniformly. If the quiescent intervals
are long and the number of these long intervals is large, then
the average number of samples recorded would be relatively
low. However, the recorded samples contain sufficient informa-
tion that enables a fairly accurate reconstruction of the source
signal. The recorded samples can be represented with very
high accuracy; essentially because highly accurate clocks are
much easier to build than circuits that quantize amplitudes
very accurately. Also, asynchronous level crossing sampling
is attractive because it can be implemented with a single-
comparator circuit [8].

Several case studies in ADC’s show that level crossing based
on asynchronous sampling technique can be more effective
than synchronous ADCs. The 1-bit ADC (bipolar) is optimized
improving the dynamic range such that quantization error
effectively decreases [9], [20]. The level crossing sampling
scheme has been demonstrated for speech applications using
CMOS technology and a voltage mode approach for the analog
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parts of the converter. Electrical simulations prove that the
Figure of Merit of asynchronous level crossing converters
increased compared to uniform sampling ADCs [4], [11].
Level crossing sampling scheme have also been suggested in
literature for non-bandlimited signals [5], random processes
[10], band limited gaussian random processes [6], reconstruc-
tion from nonuniform sampling [8], [21] and for monitoring
and control systems [12], [13], [14], [15], [16]. The level
crossing sampling strategy is also known as an event-based
sampling [17], [18], Lebesgue sampling [19], send-on-delta
concept [14] or deadband concept [16].

In general, conventional uniform sampling is with uniform
time-step and variable amplitude. There is a trade-off between
the requirements of bandwidth and the dynamic range to obtain
a certain resolution. Sampling at the Nyquist rate requires
smallest bandwidth but large number of quantization levels
to achieve high resolution. Increasing the bandwidth decreases
the need for large number of quantization levels, thus reducing
the quantization error power and increasing the number of
samples. At the extreme, the signal can be sampled capturing
its characteristics using level crossing concept. Several signals
have interesting statistical properties, but uniform sampling
does not take advantage of them. Signals such as electro
cardiograms, speech signals, temperature sensors, pressure
sensors, seismic signals are almost always constant and may
vary significantly during brief moments. In level crossing, the
characteristics of the waveform play a vital role in approxima-
tion of the input signal. It has been proved in [1], [4] that level
crossing sampling approach can lead to reduction in number
of samples. The other advantage of level crossing sampling is
that sampling frequency and quantization levels are decided by
the signal itself. However, the methods developed for various
cases use either constant threshold step size quantization levels
(linear levels) or manually determined levels. The problem
of primary interest is to determine statistical information on
automatic distribution of quantization levels based on the char-
acteristics of the input signal. Linear threshold level allocation
scheme is simple but not efficient in terms of data bit usage
for the following reason. The linear threshold allocation will
result in a higher SNR at the region of higher amplitude than
the region of lower amplitude. This increased SNR at the
higher signal amplitude does not increase the perceived audio
quality because humans are most sensitive to lower amplitude
components [23]. To overcome these problems, we propose
a non-linear quantization approach based on exponential and
logarithmic functions which dynamically assign the number
of quantization levels exploiting this auditory motivation.

The paper is organized as follows. In section II level cross-
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ing based sampling approach with the proposed nonuniform
threshold allocation scheme is described. The incorporation of
exponential and logarithmic functions to formulate a rule for
allocation of nonuniform threshold levels in multi level cross-
ing is discussed in Section III. In section IV experimental setup
for testing the proposed approach and results are discussed.
Also, the performance and analysis of the proposed method
is discussed. Section VI is devoted to conclusions as well as
indicate directions for future lines of work.

II. LEVEL CROSSING BASED IRREGULAR
SAMPLING MODEL

Level Crossing Analysis represents an approach to in-
terpretation and characterization of time signals by relating
frequency and amplitude information. Measurement of level
crossing of a signal is defined as the crossings of a threshold
level l by consecutive samples.

Definition 2.1 Let w (x) be a deterministic weight function
and p (x) be the probability density function of a source signal.
The level sampler Lf(.) density distribution with a determin-
istic level allocation weight function f (.) is a mapping

Lf(.): R −→ f (p (x) , w (x) , Z) : Lf(.) = (p (x) ⊗ w (x))×N

where N is the total number of nonuniform levels. R and Z

denotes the set of real and integer numbers respectively. The
⊗ symbol represents convolution.

Since the quantization levels are irregularly spaced across
the amplitude range of the signal, it increases the efficiency
of bit usage. The spacing of the levels is decided by the
importance of the amplitude segments which is discussed in
section III. A sample is recorded when the input signal crosses
one of the nonuniformly spaced levels. The precession of time
of the recorded sample is decided by the local timer τ .

Definition 2.2 Let Lf(.) = {l1, l2, ...lN} be the set of
nonuniformly spaced levels and 2b = N quantization levels
with b bit resolution. The level crossing of the threshold level
li by a signal s(t) with period T is given by

Lf(.) (Ini) = li iff

(
s

(
i − 1

N
T

)
− li

)
×

(
s

(
i

N
T

)
− li

)
< 0

(1)
where n sub intervals are defined by Ini =

(
i−1
N

T, i
N

T
)
, i =

1, 2, ...n

The level crossing problem is depicted in Figure 1 where
the samples are recorded whenever the input signal crosses the
threshold levels. If a sample is recorded and transmitted every
time a level crossing occurs, the encoding procedure is called
asynchronous delta modulation [2].

III. WEIGHT FUNCTIONS FOR IRREGULAR
SAMPLING

Determining the positions of threshold levels on an am-
plitude scale is very important as it has a huge impact on
the performance of coding. Unfortunately there is no theory
available to determine the locations of threshold levels which
exploit the statistics of a random variable under a particular
distribution. Furthermore, the uniform threshold levels are
not the efficient coding of the levels because they do not

Fig. 1. Level Crossing sampling. t1, t2, t3, t4, t5, t6, t7, t8 denotes the
recorded samples due to levels l1, l2, l3, l4 which are nonuniformly spaced.

take advantage of the statistical properties of the signal. The
basic idea behind the weight functions is to emphasize the
amplitude regions where (speech) signal is dominant, and
to attenuate the amplitude regions which are less important
considering auditory properties. As a result, signals with lesser
activity in higher amplitude regions compared to the lower
amplitude regions, will have less number of levels at higher
amplitude region. Hence, basic methodology in level crossing
based irregular sampling is to choose a weight function which
encourages the important amplitude regions. The present study
discusses distribution of nonuniform threshold levels based on
the two weight functions namely exponential and logarithmic,
to study and analyze the characteristics of proposed approach.

Our sense of hearing perceives equal ratios of frequencies
as equal differences in pitch. Representation of importance
of amplitude on a logarithmic scale can be helpful when the
importance of regions varies monotonically. Logarithmic rule
assigns less number of levels to the corner amplitude regions
and more levels are assigned logarithmically in important
amplitude regions. The center amplitude regions (near zero
amplitude regions) are considered to be important amplitude
regions. This issue, however is not whether to accept or reject
logarithmic rule but to appreciate where it fits in, and where
it does not.

A. LOGARITHMIC FUNCTION

A logarithm of a number x in base b is a number n such
that x = bn, where the value b must be neither 0 nor a root
of 1. It is usually written as

logb (x) = n

When x and b are further restricted to positive real numbers,
the logarithm is a unique real number.

B. EXPONENTIAL FUNCTION

Take e > 0 and not equal to 1 . Then, exponential function
is defined as a mapping

f : R −→ R: x −→ ex
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where e is know as base of exponent function.

C. LEVEL ESTIMATION

In a deterministic environment, the accuracy of the signal
reconstruction depends on several parameters such as position-
ing of the levels, total number of levels, statistical properties of
the signal etc. If weight functions are directly applied for level
estimation, amplitude activity information of a given signal
will not be used, which results in biased level estimation.
Hence, level distribution PDF is convolved with signal PDF to
correct for the biased distribution of levels. This ensures that
level distribution is unbiased. Specifically, for a given signal
we analyze its structural behavior by estimating its PDF. The
signal histogram is approximated to obtain the signal PDF
p (x).

Now, consider a signal with amplitude PDF p (x) and weight
function w (x). Let N be the total number of levels. The
locations of N levels are estimated by the distribution

Lf(.) (x) = p (x) ⊗ w (x) (2)

Lf(.) (x) gives the probability distribution of levels and
guides the distribution of N levels over the amplitude range.
As expected, the spacing of N levels are not uniform and they
are nonuniformly spaced over the amplitude range. Each level
can be represented with log2 (N) bits. Since the levels are
nonuniformly spaced depending on the importance of the am-
plitude segment, we efficiently utilize the quantization levels
by ignoring the amplitude regions with less activity. Hence
only amplitude regions with higher activity and important
lower amplitude regions will be allocated more number of
levels using the weight function w (x) and signal amplitude
PDF p (x). The histogram of sample speech signal is shown
in Fig.2(a), along with plot of PDF of logarithmic weight
function(Fig.2(b)) and exponential weight function (Fig.2(c)).
The steps employed for the proposed approach are summarized
as follows.

1) Input signal s[n] is normalized to lie within [-1, 1] and
made zero mean.

2) Find the signal histogram. Approximate the signal his-
togram to find the PDF of the speech signal.

3) For each weight function and for varying number of
bins(used to compute the weight function)

a) Find the distribution of quantization levels
b) Find the level crossings of the input signal. Store

the level crossed sample value and its position.

IV. EXPERIMENTAL EVALUATION

In this section, the performance of the proposed approach is
evaluated for speech signals. We have run simulations for the
level crossing based sampling of speech signals from TIMIT
database [22]. The TIMIT speech signals are sampled at 16
KHz sampling rate and each sample size is 16 bit. Speech
signals are chosen from TEST/DR1 folder which contains
seven male and four female adult speakers thereby yielding a
total of 100 signals. The PDF of the speech signal is estimated
by computing the amplitude histogram of the signal with
100 bins. The total number of quantization levels required
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Fig. 2. (a) Signal histogram of a clean speech signal. (b) PDF of logarithmic
weight function (c) PDF of exponential function



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:11, 2009

2137

to sample the given signal are set to 16, 32, 64 and 128.
The accuracy of distribution of the levels computed from
equation 6 also depends on the number of bins used to compute
convoluted PDF of the signal with weight function. The levels
are estimated for 20, 40, 60, 80, 100 bins for comparison and
analysis. We evaluated the system with proposed logarithmic
and exponential weight functions. The performance of the pro-
posed method is evaluated computing SNR and compression
ratio. The performance measure SNR can be interpreted as

SNR = 10log10

(
1
N

∑N

i=1 s (i)
2

1
N

∑N

i=1 s (i)
2
− s

′ (i)
2

)

where s (i) represents the original speech signal and s
′

(i)
denotes the reconstructed signal. Computation of SNR can
be interpreted as the speed-up factor by which level crossing
sampler achieves the same precision as the uniform sampling
method. The ability to recover the uniform samples from its
data representation of unequal sample values is also impor-
tant. In our study, we applied direct interpolation scheme,
polynomial curve fitting to approximate original signal from
level crossed signal. Compression ratio is used to quantify the
reduction in data-representation size produced by the proposed
method and is defined as the ratio between the uncompressed
size (original signal size) and the compressed size (level
crossed sample size).

compression ratio =

number of samples in

original signal

number of samples used in

reconstruction of signal

The simulation results are approximated analytically using
quadratic polynomial.

By comparing exponential and logarithmic rule results, we
analyze the performances. We investigated relationship be-
tween SNR and the histogram bins used to compute the signal
amplitude histogram. The simulation results are depicted in
Fig. 3(a) and Fig. 4(a). SNR of the resampled signal generally
improves as the histogram bins increase for all the levels. This
shows that increasing the resolution of the amplitude scale
helps in accurate distribution of the levels thereby increasing
the SNR. The exponent rule gives high SNR consistently
compared to the logarithmic and linear rule at all bins. The
characteristic graph appears convex for 128 levels in Fig. 4(a)
whereas characteristic graph appears concave for 128 levels
in Fig. 3(a). This is due to the distribution of quantization
levels on amplitude range by the weight functions. Exponential
weight function assignes more levels near zero zero amplitude
regions compared to logarithmic weight function. Hence, as
the number of quantization levels increase, performance of
the exponential weight function better than logarithmic weight
function. From Fig. 2(b), it can be observed that near zero
amplitude regions are given equal importance whereas distri-
bution levels keep increasing towards the near zero amplitude
regions in case of exponential weight function. Hence, level
crossing based sampling process results in poor performance
for logarithmic weight function. As the number of histogram
bins and quantization levels increase, more quantization levels
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Fig. 3. Performance of logarithmic weight function (a) Histogram bin versus
SNR. (b) Quantization level versus Compression ratio (c) Quantization level
versus SNR. (d) SNR versus Compression ratio.



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:11, 2009

2138

20 30 40 50 60 70 80 90 100

1

2

3

4

5

6

7

8

Histogram Bins

S
N

R
(d

B
)

(a)

20 40 60 80 100 120

0.5

1

1.5

2

2.5

3

Levels

R
at

io

(b)

20 40 60 80 100 120

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

Levels

S
N

R

(c)

3.5 4 4.5 5 5.5 6 6.5 7 7.5

0.5

1

1.5

2

2.5

3

SNR(dB)

R
at

io

(d)

Fig. 4. Experimental results for exponential weight function (a) Histogram
bin versus SNR. (b) Quantization level versus Compression ratio (c) Quanti-
zation level versus SNR. (d) SNR versus Compression ratio.

are spread across amplitude range. Hence, SNR increases
as the number of histogram bins and quantization levels
increases. The performance of logarithmic rule (Fig. 3(a)) is
slightly less than that of exponential rule (Fig. 4(a)) for all the
levels. The best performance is observed for exponential rule
with 128 levels. In case of exponential rule, 1 dB increment
in SNR is observed compared to logarithmic for 128 levels.
This proves that increasing the quantization levels increases
the SNR.

However, increasing the quantization levels considerably
decreases the compression ratio. The comparison of com-
pression ratio at various levels for the two rules is shown
in Fig. 3(b) and Fig. 4(b). We observe that exponential rule
slightly outperforms exponential rule. The exponential rule
gives higher SNR for lesser levels and the ratio decreases
as the levels are increased. For higher levels all the rules
give similar results. Since, the logarithmic weight function
forces quantization levels to spread equally near zero ampli-
tude segments, the compression ratio considerably decreases
compared to exponential weight function. The results of SNR
versus levels (Fig. 3(c) and Fig. 4(c)) show that exponential
weight function performance is superior to logarithmic weight
function at all levels. Minimum SNR for 16 levels is near 3.5
dB in exponential weight function whereas minimum SNR in
logarithmic weight function is 2.8 dB for 16 levels.

Figure 3(d) and 4(d) shows the plot of SNR versus com-
pression ratio. The characteristic curve appears to be concave
for exponential rule and linear for logarithmic rule. Increasing
SNR decreases the compression ratio rapidly due to increased
number of level crossings. Compression ratio of greater than
3 is achieved in exponential rule (Fig. 4(d)) with SNR 3.4 dB.
From Fig. 3(d), we see that compression ratio less than 3 is
achieved with SNR 2.4dB resulting in a poor performance for
logarithmic rule. As the SNR increases, exponential weight
function achieve good performance compared to logarithmic
weight function due to the spread of quantization levels.
Furthermore for higher SNR values the compression ratio
drops drastically for exponential and logarithmic rule. Perfor-
mance of exponential weight functions is considerably better
than logarithmic weight function, with higher SNR for higher
compression ratio, which is nonetheless better performance.
Fig. 5 compares the plot of input signal(speech signal from
TIMIT database) with reconstructed signal and plot of error
in signal reconstruction. It can be seen that, reconstruction of
signal with exponential weight function is more closer to the
original signal than the reconstruction with logarithmic weight
function. This argument is further supported by the error
graphs. The error graphs shows the error in reconstruction
using logarithmic weight function is more than exponential
weight function.

The behavioral patterns of logarithmic and exponential
weight function appear to be similar except in SNR versus
ratio analysis. Both weight functions try to exploit the auditory
motivation and try to assign dynamic nonuniform quantization
levels. Exponential weight function distributes more levels in
the critical amplitude regions. However, the priority of the
amplitude regions varies logarithmically from corner ampli-
tude regions to near zero value amplitude regions in case of
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Fig. 5. Comparison of input signal and reconstructed signal with logarithmic
and exponential weight functions. In this example, thirty two quantization
levels are distributed using deterministic weight functions. The reconstructed
signals along with error in reconstruction is shown in figure.

logarithmic weight function. Exponential distribution of the
quantization levels assignes more levels to near zero aplitude
regions than logarithmic weight function. Hence, the SNR
of the resampled signal using exponential weight function
remains consistently superior to logarithmic weight function.
Lack of levels at critical amplitude regions of the signal
decreases the SNR of the resampled signal. The performance
of the proposed approaches is fairly consistent with that of
Sayiner[3]. This experimental analysis illustrates that signal
with special statistical behavior such as speech, medical sig-
nals are not suitable for uniform sampling. These types of
signals can be more efficiently reconstructed using a level
crossing scheme.

V. CONCLUSION

This paper presents a new threshold level allocation schemes
for level crossing based on nonuniform sampling which dy-
namically assigns the number of quantization levels depending
on the importance of the given amplitude range of the input
signal. Proposed methods take the advantage of statistical
properties of the signal and allocate the nonuniformly spaced
quantization levels across the amplitude range. The proposed

level allocation scheme for nonuniform sampling based on
level crossing may motivate directed attempts to augment
traditional methods that will improve their ability. Overall,
these results motivate continued work on level crossing based
on nonuniform sampling for improving sampling performance
and analyzing the signals. Simplicity but significantly good
performance of logarithmic weight function is what is ob-
served. In general logarithmic is best because implementation
complexity of logarithmic is much lesser than IBF wight
function. Further investigation could look at this level cross-
ing problem for 2-dimensional signals. This is much more
challenging and also not a simple extension of 1-dimensional
solution.

VI. CONCLUSION

This paper presents a new threshold level allocation schemes
for level crossing based on nonuniform sampling which dy-
namically assigns the number of quantization levels depending
on the importance of the given amplitude range of the input
signal. Proposed methods take the advantage of statistical
properties of the signal and allocate the nonuniformly spaced
quantization levels across the amplitude range. The proposed
level allocation scheme for nonuniform sampling based on
level crossing may motivate directed attempts to augment
traditional methods that will improve their ability. Overall,
these results motivate continued work on level crossing based
on nonuniform sampling for improving sampling performance
and analyzing the signals. Simplicity but significantly good
performance of exponential weight function is what is ob-
served. Further investigation could look at this level cross-
ing problem for 2-dimensional signals. This is much more
challenging and also not a simple extension of 1-dimensional
solution.
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