
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:1, 2008

103

 

 

  
Abstract—Fast retrieval of data has been a need of user in any 

database application. This paper introduces a buffer based query 
optimization technique in which queries are assigned weights 
according to their number of execution in a query bank. These 
queries and their optimized executed plans are loaded into the buffer 
at the start of the database application. For every query the system 
searches for a match in the buffer and executes the plan without 
creating new plans.  

Keywords—Query Bank, Query Matcher, Weight Manager. 

I. INTRODUCTION 
UERY optimization is well-known to be a 
computationally intensive process since a 

combinatorially large set of alternatives has to be considered 
and evaluated in order to find an efficient access plan [1]. 
With the increase of IT involvement in an organization data is 
increasing every year, making its storage and retrieval a 
challenging issue. Therefore if the organization is 
geographically dispersed around the world then data storage 
and it’s sharing become more complex. To overcome the 
storage and sharing challenge, grid databases promise to be a 
good solution. But, data retrieval still remains a research 
problem. Recently used grid databases require a support for 
dynamic query optimization for efficient and cost effective 
data retrieval.  

During the execution of a query in a database management 
system (DBMS), the query optimizer creates all possible 
query evaluation plans. All plans are equivalent in term of 
their final output but vary in their cost, i.e., the amount of time 
that they need to run [2]. The query optimizer chooses the best 
one. As soon as the data is retrieved the query and its plans are 
deleted from memory to free the space for future usage. For 
the next query same technique is repeated even if the query is 
already executed; we propose that the queries and their 
executed plans should be saved into the query bank and 
loaded into the buffer while accessing the database. We assign 
a weight to each query before saving into the query bank and 
the weight increases by one if the same query is executed 
again.  

In the proposed system at the start of database application, 
the auto query and execution plan loader, loads queries that 
have higher weights into buffer from query bank according to 
 

K. Irfan, F. S. Khan, T. Zia are with Department of Computer Science and 
IT, University of Sargodha, Sargodha, Pakistan (e-mail: 
kashif_irfan31@hotmail.com, fahadji@yahoo.com, tehseen_zia@yahoo.com). 

M. A. Anwar are with Department of CS and MIS, University College 
Yanbu, Saudi Arabia (e-mail: anwarma@yahoo.com). 

the buffer size. The query matcher finds a query with queries 
that are available in buffer; if query matches then its plan is 
executed directly and the weight manager increases the weight 
of the query by one. In case the query is not available in 
buffer then auto query and execution plan loader loads the 
next queries and their plans into the buffer from query bank 
and replaces these queries with queries and plans of higher 
weight until required match if available in query bank is not 
found. If query matcher fails to find the query then new query 
plan is created and processed and the query with its optimized 
plan is saved in query bank for future usage.  

In the second section we discuss system architecture of the 
proposed system. We review related work in section three, 
and conclude and present future research direction in fourth 
section.    

II. SYSTEM ARCHITECTURE OVERVIEW 
In this section we discuss the proposed system in detail. 

The architecture of the proposed system is shown in Figure 1. 
The system components consist of new query handler and 
optimizer (NQHO), query matcher (QM), buffer, weight 
manager (WM), query bank (QB) and auto query and 
execution plan loader (AQEPL). 

A. New Query Handler and Optimizer 
Every query is passed to the NQHO and it passes that 

query, as it is to the QM. QM match’s the query in buffer. If 
match is found then query is executed and NQHO job 
finishes. If match is not found then NQHO creates all possible 
execution plans for the input query and execute a plan, which 
is cost effective according to the query optimization 
technique.  After the execution of query the query is passed to 
the WM, which assign weight one to query and that query is 
stored into the QB for future use. 

B. Query Matcher 
This component of system search’s the input query from 

buffer. When a query comes for processing new query handler 
passes the query to QM for verification either query is 
available in buffer or not. Here three cases may arise query is 
available in buffer; query is not available in buffer but is in 
QB and query is not available in QB.  

In the first case match is available in the buffer and QM 
matches the user query with one of the queries available in 
buffer. If its match is found then, directly, query plan is 
accessed and executed. After execution WM increase the 
query weight by one.  

 

Kashif Irfan, Fahad Shahbaz Khan, Tehseen Zia, and M. A. Anwar 

Weight-Based Query Optimization System 
Using Buffer 

Q 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:1, 2008

104

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 System Architecture Diagram 
 
 
In the second case match is available in buffer but is in the 

QB. The AQEPL swaps next queries of higher weight from 
QB into buffer according to buffer size and takes the already 
existing queries into the QB. This process is repeated until the 
QM finds the required query. When query is found its 
execution plan is accessed and processed. After execution the 
WM increases the weight of query by one and AQEPL 
refreshes the buffer, it takes the buffers queries into QB and 
loads the queries of highest weight from QB into buffer again.  

In the third case match is not available in the QB. The 
NQHO creates all possible execution plans and execute the 
best one which is cost effective. After the execution of best 
plan the WM assigns weight one to the query and query with 
its executed plan is saved into QB and AQEPL once again 
refreshes the buffer, it takes the buffers queries into QB and 
loads the queries of highest weight from QB into buffer again.  

 
C.  Buffer 
It temporarily holds the processed queries and their best 

plans of highest weight according to its size. The size of 
buffer is limited so limited number of queries is loaded in the  

 

 
 

buffer. When database application is closed all queries and 
their plans are moved to QB.  
 

D.  Weight Manager 
The WM is responsible for assigns weight to processed 

queries. It increases the weight of query by one after 
processing the query and assigns weight one to query, which 
is executed first time.  

 
E.  Auto Query and Execution Plan Loader 
It loads the queries with highest weights and their plans 

from query database into buffer according to buffer size. 
When QM searches query in buffer and fails to find the query 
then it loads the next queries and their plans of highest weight 
among the QB. When AQEPL is idle then it calculates the 
number of queries and their plans in advance according to 
buffer size. 

 
F.  Communication Manager 
For the creation of new execution plans CM provides 

database statistics from data dictionary and for the processing 
of query it provides data from database also.  

 

 
Organizational  

Database 

 
Organizational  

Database 

 
Data 

Dictionary 

 
Query Bank 

 
Buffer 

 
Weight 

Manager 

 
Weight 

Manager 

 
Weight 

Manager 

 
 

Query 
Matcher 

SELECT  attribute1 
FROM table 
WHERE  condition Result 

 
W i h M

New Query Handler and Optimizer 

 
Weight Manager

Auto Query and Execution Plan Loader 
 

 
W i ht M

Query Coordinator 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:1, 2008

105

 

 

G.  Query Bank 
All executed queries and their best plans are stored in QB in 

descending order according to weight assigned by WM. 
 
Example 
Consider a bank database application with two users A and 

B has their accounts in the bank. They deposit and draw cash 
from bank and a query is executed for the updation of their 
account balance. User A deposits and/or draws cash monthly 
where as user B is a frequent bank user who deposits and/or 
draws cash daily. For the first month user A’s query is 
executed twice in a month for the updation of his account and 
WM assigns weight after every execution which will be two 
after a month. In the case of user B, the query is executed 
twice in a day and sixty times in a month; hence, the WM 
assigns weight sixty to his query. The weight assigned to B’s 
query is greater than that of A’s query, therefore the 
availability of user B’s query along with its execution plan in 
buffer is higher than user A. Whenever user B’s query is 
executed his match will be in the buffer and their will be no 
need to create execution plans for such a query. Only the 
available matched plan will be executed with modification in 
the debit or credit amount.  For user A, the match was not in 
the buffer because of low weight, hence in such case AQEPL 
will load the query after few swaps into the buffer. After the 
first time execution of queries for users A and B, there will be 
no need for the creation of execution plans. Once execution 
plan is created then, whenever that query come for execution 
its execution plan is directly accessed and executed. This will 
save time of execution plan creation and will be faster than the 
traditional ones.  

III.  RELATED WORK 
Georgia Kouttrika and Yannis Ionnidis [3] discussed query 

optimization by using rule base technique. In this technique, 
for each user profile is created and stored along with the 
weight assigned queries. It’s a good approach however, the 
domain is limited to digital library and two users may have the 
same profiles. This will cause a redundant storage of user 
profiles.   

Hristidis et al. [4] developed a prototype system called 
PREFER for efficient execution of multi-parametric ranked 
queries. Their focus is at query level for a single relation 
where user preference is assigned to each attribute of the 
query. Query returns result according to the weighted 
preference function.  This approach also creates execution 
plans every time for a preference query. These preference 
queries and their optimized execution plans are not stored. 
Their prototype system may benefit from our proposed system 
if these preference queries and relevant execution plans are 
stored in the database and loaded into the buffer when 
database application starts first time. It will further speed up 
the query execution.  

Our proposed system is independent of any specific 
database application, query, relation; we assign weight to the 
queries without confining it to any user, which will facilitate 
all the users using the application.  

The proposed system efficiently stores the executed queries 
and their plans in QB for future use and these are loaded into 
the buffer with the start of the database application.  We hope 
a stage will come when almost all queries will have their 
matches in the QB and then there will be no need for creation 
of new execution plan. The only fear we have is that if a query 
comes for execution to find its match we have to replace 
buffer many times with queries from QB, and may be the 
match is not in the QB. It will happen during early usage of 
the database application and will be gradually eliminated as 
the queries in the QB increases. The price of memory is 
decreasing drastically that will allow us to increase the size of 
buffer to accommodate the more queries and their plans. 
Hence the chances of match for required query will be 
increased.   

IV.  CONCLUSION 
The query optimization is the need of every database. 

System configuration and resource availability may change 
during the long evaluation period of execution plans. As a 
result, queries are often evaluated with sub-optimal plan 
configurations. To remedy this situation, we have proposed a 
buffer based query optimization technique. In this technique 
once optimal execution plan is selected for a query then there 
is no need to create any execution plan for similar query in 
future. In future our focus will be the implementation of the 
system on the GRID technology, where data retrieval is a 
challenging issue.  

ACKNOWLEDGMENT 
Authors wish to appreciate the University for providing 

research opportunity. 

REFERENCES   
[1] K. Shim, T. Sellis and D. Nau, Improvements on a heuristic algorithm 

for multiple-query optimization, Data and Knowledge Engineering, 12, 
1994. 

[2] Yannis E. Ioannidis, Query Optimization.  ACM Computer  Surv. 28(1): 
121-123 (1996). 

[3] Georgia Kouttrika and Yannis Ionnidis, Ruled-based query 
personalization in digital libraries, International journal digital library, 4: 
60-63 (2004). 

[4] Hristidis V, Koudas N, Papakonstantinou Y, Prefer: a system for the 
efficient execution of multiparametric ranked. Proceedings of the ACM 
SIGMOD international conference on management of data, Santa 
Barbara, CA, 21-24 May 2001. pp 259-270. 

 


