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Abstract—Three structure-dependent integration methods have 
been developed for solving equations of motion, which are 
second-order ordinary differential equations, for structural dynamics 
and earthquake engineering applications. Although they generally 
have the same numerical properties, such as explicit formulation, 
unconditional stability and second-order accuracy, a different 
performance is found in solving the free vibration response to either 
linear elastic or nonlinear systems with high frequency modes. The 
root cause of this different performance in the free vibration responses 
is analytically explored herein. As a result, it is verified that a weak 
instability is responsible for the different performance of the 
integration methods. In general, a weak instability will result in an 
inaccurate solution or even numerical instability in the free vibration 
responses of high frequency modes. As a result, a weak instability 
must be prohibited for time integration methods. 
 

Keywords—Dynamic analysis, high frequency, integration 
method, overshoot, weak instability.  

I. INTRODUCTION 

N a nonlinear dynamic analysis or a substructure 
pseudo-dynamic test, an integration method is generally 

required to carry out time integration. Although both explicit 
and implicit integration methods can be adopted for the 
calculations, either an explicit or implicit integration method 
will experience its own difficulty. A small step size must be 
adopted for an explicit integration method to meet stability and 
thus it will significantly increase the total number of time steps 
for nonlinear dynamic analysis or it is incapable of conducting 
pseudodynamic tests due to the presence of high frequency 
modes. On the other hand, an iteration procedure must be 
generally adopted for an implicit integration method. Hence, 
the computation details of each time step will become complex 
and is time consuming for nonlinear dynamic analysis. In 
addition, extra hard wares are also needed for implementing an 
implicit pseudodynamic algorithm. An unconditionally stable, 
explicit structure-dependent integration method was first 
developed by Chang [1] for overcoming the difficulty 
experienced in the pseudodynamic tests, where a test specimen 
with high frequency modes cannot be performed due to 
numerical instability for explicit pseudodynamic algorithm. 
This integration method is known as the Chang Explicit 
Method (CEM). Some of this structure-dependent type of 
integration methods were developed subsequently [2]-[8].  

In addition to CEM, two similar integration methods were 
also developed for time integration. The method developed by 
Chen and Ricles [9] is referred as CRM, while that developed 
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by Tang and Lou [10] is referred as TLM. Notice that CEM is a 
member of the first Chang family method [11] and CRM is a 
member of the second Chang family method [12]. In general, 
two difference equations are required for solving an equation of 
motion. One is a displacement difference equation and the other 
is a velocity difference equation. In general, CEM is considered 
as a semi-explicit integration method. This is because that it has 
an explicit displacement difference equation and an implicit 
velocity difference equation, whereas both CRM and TLM are 
considered as fully explicit integration methods. This is 
because that both difference equations are explicit for CRM and 
TLM. It will be shown that these three integration methods 
generally have the same numerical properties for linear elastic 
systems since they share the same characteristic equation for 
zero viscous damping for linear elastic systems. However, they 
have different performance in calculating a free vibration 
response to the systems with high frequency modes. This 
phenomenon will be numerically illustrated and the cause of 
this phenomenon will be analytically explored.   

II. FORMULATIONS AND BASIC NUMERICAL PROPERTIES 

The general formulation of CEM, CRM and TLM for a 
single degree of freedom system can be simply written as:  
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where id , iv , ia  and if  are the displacement, velocity, 

acceleration and external force at the end of the i th  time 
step, respectively. The coefficients of 1 , 2 , 1  and 2  for 

CEM, CRM and TLM are found to be: 
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where ( )t    and /k m   is a natural frequency 

determined from the stiffness, where k  is the initial stiffness; 
  is a viscous damping ratio. In addition, 21

41D      is 

defined. Apparently, the very different formulations are found 
for the three integration methods. 
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The analysis of each integration method has been conducted 
in their original developments and thus it will not be elaborated. 
Alternatively, the numerical properties of each integration 
method are summarized for comparison. The characteristic 
equation for linear elastic systems is found to be: 
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 (3) 

for each integration method with zero viscous damping. In 
general,   denotes an eigenvalue of the characteristic 
equation. It can be shown that (3) is the same as that of the 
constant average acceleration method (AAM). This implies that 
stability, period distortion and numerical damping properties 
for CEM, CRM and TLM are the same as those of AAM for 
linear elastic systems with zero viscous damping. 

 

 

Fig. 1 Comparisons of displacement responses for Case 1 for CEM, CRM and TLM 
 

III. OVERSHOOT IN EARLY TRANSIENT RESPONSE 

An adverse overshoot in the early high frequency transient 
responses has been discovered [13] if the Wilson- method is 
applied to carry out time integration [14]. Notice that this 
overshoot cannot be detected by evaluating the characteristic 
equation. The root cause of this overshoot has been well 
explored [15] and a technique has been proposed to detect such 
an unusual overshoot behavior. A tendency to overshoot an 
exact solution for an integration method can be disclosed by 
examining the free vibration response to a single degree of 
freedom system subject to the initial conditions of the previous 
step data in the limit   . Hence, it is of great interest to 
investigate whether each of CEM, CRM and TLM has this 
adverse property and thus results in a different performance in 
solving a free vibration to the systems with high frequency 
modes. As a result, the results for CEM, CRM and TLM in the 
limit are found to be: 
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It is manifested from this equation that no overshoot both in 
displacement and velocity is expected for CEM, CRM and 
TLM since each term is independent of   . 

To corroborate the analytical predictions for the 
overshooting behaviors of the three integration methods, both 
the displacement and velocity responses to a linear elastic 
single degree of freedom system as shown in the first line of (1) 
are computed by using CEM, CRM and TLM. Hence, 1m  , 

0c   and 610k  , and are adopted. The natural frequency is 

found to be  310 rad/sec  . Two initial conditions are 
considered: 
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In general, a free vibration response excited by a nonzero 

initial displacement is treated in Case 1 while for Case 2 a free 
vibration response excited by a nonzero initial velocity is 
considered. A time step of 0.1sect   is chosen for time 
integration and thus the value of   is as large as 100. As a result, 
numerical solutions corresponding to Case 1 and Case 2 are 
plotted in Figs. 1 and 2. It is seen in Fig. 1 (a) that the results 
obtained from CEM coincide with those obtained from AAM 
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and show no overshoot in displacement. Meanwhile, it is 
manifested from Figs. 1 (b) and (c) that the results calculated 
from CRM and TLM significantly overshoot the results 
obtained from AAM. Clearly, the results of CEM is in good 

agreement with the analytical prediction of no overshoot in 
displacement while the overshoot of CRM and TLM is totally 
inconsistent with the analytical prediction of no overshoot in 
displacement. 

 

 

Fig. 2 Comparisons of displacement responses for Case 2 for CEM, CRM and TLM 
 

On the other hand, the displacement responses obtained from 
CEM and TLM are the same as those obtained from AAM and 
no overshoot in displacement is found as shown in Figs. 2 (a) 
and (c). These phenomena are consistent with analytical 
predictions. Whereas, the results obtained from TLM clearly 
displays a very significant overshoot behavior as shown in Fig. 
2 (b). As a result, this behavior is inconsistent with the 
analytical result. In summary, the numerical results for CEM 
are in good agreement with the analytical predictions both in 
displacement and velocity while for CRM and TLM 
inconsistency is found. Hence, the cause of this inconsistency 
between the calculated results and the analytical predictions as 
shown in (4) must be further explored. 

IV. CAUSE OF OVERSHOOT 

To explore the root cause of the overshoot in the calculated 
results obtained from CRM and TLM while there is no 
overshoot for the results obtained from CEM as shown in Figs. 
1 and 2, an analytical scheme is applied to evaluate these 
overshoot behaviors. In general, the scheme is to analytically 
derive the numerical solution obtained from an integration 
method for a free vibration response of an undamped, linear 
elastic single degree of freedom system. On the other hand, an 
exact free vibration response is derived from the fundamental 
theory of structural dynamics. Hence, comparing the numerical 
solution to the exact solution, an overshoot phenomenon can be 
disclosed. 

It is very straightforward to yield an exact free vibration 
response to a linear elastic single degree of freedom system 
subject to a combined initial condition of 0d  and 0v . As a 

result, an exact displacement response is found to be: 
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Clearly, nd  is a bounded oscillatory displacement response. 

Meanwhile, an integration method can be also applied to 
compute the free vibration response. In general, the application 
of an integration method to compute the complete free vibration 
response can be expressed in a recursive matrix form as: 
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0d  and 0v . Besides, A  is known as an amplification matrix. It 

is well recognized that the matrix A  is diagonalizable if it has 
three linearly independent eigenvectors. As a result, one can 
have: 
 

1

0 0

n n

n

 X A X ΦΛ Φ X  (8) 



International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:13, No:6, 2019

347

 

 

where Λ  is a diagonal matrix and its diagonal term i  is an 

eigenvalue of A for 1 ~ 3i  , and Φ  is an eigenvector matrix 
and each column i  is the eigenvector corresponding to i . It 

can be found from (3) that the eigenvalues for the three 
integration methods are: 
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This equation reveals that the three integration methods 

generally have three different eigenvalues for a general value of 
  and thus they have three linearly independent eigenvectors. 
This implies that the matrix A  is generally diagonalizable and 
then (8) is applicable to calculate the free vibration responses 
without any difficulty. As a result, no overshoot in 
displacement and velocity is strongly indicated.   

Since an overshoot phenomenon is found in the responses of 
the numerical example for a large value of  , it is necessary to 
examine the limiting case of  . Although the three 
eigenvalues of the three integration methods are generally 
different for a general value of  , the two principal 
eigenvalues will become identical in the limit  . In fact, 
the three eigenvalues are found to be: 

 

1,2 31 , 0    (10) 

 
On the other hand, their corresponding eigenvector matrices 

for CEM, CRM and TLM are found to be: 
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It is clear that CEM can still have three linearly independent 

eigenvectors although it possesses two identical principal 
eigenvalues in the limit  . This indicates that its 
amplification matrix can be still decomposed by CEMΦ  by using 

(8). Consequently, after substituting CEMΦ  as shown in (11) 

into (8), the numerical solution in a mathematical form for 
CEM in the limit   can be derived and it is found to be: 
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where ( )t    and   is a calculated natural frequency in a 

numerical procedure in contrast to a true natural frequency  . 

In general, it can be found that   is close to   as it is small 

while   will be significantly different from   as it is large. 
Unlike CEM, both CRM and TLM do not possess three 

linearly independent eigenvectors as shown in (11) and thus 
their amplification matrices are not diagonalizable. However, 
(7) can be alternatively expressed by using a Jordan canonical 
form. In fact, there exists a non-singular matrix to have 

1A ΨJΨ . As a result, one can have: 
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Notice that both CRM and TLM share the same Jordan 
canonical form and thus CRM TLM J J J . Thus, after 

substituting CRMΨ  and nJ  as shown in (14) into (13), the 

displacement of nd  in mathematical form for CRM in the limit 

  can be derived. Similarly, that for TLM can be also 
obtained. As a result, they are found to be: 
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After obtaining the mathematically derived numerical 

solutions for the three integration methods, they can be 
compared to the exact solution for discussing the overshoot 
behaviors found in Figs. 1 and 2. For this purpose, the 
coefficients of 0d  and 0( )t v  for the solutions obtained from 

CEM, CRM and TLM are summarized in Table I for 
comparison. 
 

TABLE I 

RESPONSE COEFFICIENTS OF 0d  AND 0( )t v  

Method Coefficient of 0d  Coefficient of 0( )t v  

exact  cos n  sin( )n


 

CEM  cos n  sin( )n


 

CRM   2 1 1
n

n     1
n

n   

TLM   2 1 1
n

n    sin( )n


 

 
After comparing the third row to the second row in Table I, 
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the coefficients of 0d  and 0( )t v  for CEM are almost the same 

as those of the exact solution. In fact, the only difference is the 
true   is found for the exact solution while it is replaced by a 

calculated   for the solution calculated from CEM. As a 
result, there is no overshoot in the limit   for CEM. This 
explains why there is no overshoot in displacement as shown in 
Figs. 1 (a) and 2 (a) for CEM. On the contrary, it is found that 
the coefficients of 0d  and 0( )t v of CRM is drastically 

different from those of the exact solution. In fact, both the 
coefficients of 0d  and 0( )t v  increase with the increase of the 

number of n . Notice that the coefficient of 0d  for the exact 

solution is cos( )n , which generally varies from 1  to 1; and 

that for 0( )t v  is sin( ) /n  , which will diminish to zero for a 

large  . Thus, the difference between (5) and the first line of 
(14) will become very significant for a large  . Since the 
coefficients of 0d  and 0( )t v  for CRM generally increases 

with increasing n  for a large value of  , it has a weak 
instability. In fact, either a nonzero initial displacement or a 
nonzero initial velocity will cause an instability. Meanwhile, 
the coefficient of 0d  for TLM is the same as that of CRM, and 

thus, TLM also has a weak instability for nonzero initial 
displacement. Notice that the coefficient of 0( )t v  for TLM is 

the same as that of CEM and thus TLM a nonzero initial 
velocity will not result in a weak instability. 

The results of this analytical study can be completely applied 
to explain the phenomena found in both Figs. 1 and 2. A weak 
instability is applicable to polynomial growth in n  of arbitrary 
order. Consequently, either a nonzero 0d  or 0( )t v  for CRM 

will lead to a weak instability and a nonzero 0d  will result in a 

weak instability for TLM. The analytical predictions are 
consistent with the results found in Figs. 1 and 2. 

V. CONCLUSION 

Although an overshoot in high frequency early transient 
responses has been found by Goudreau and Taylor, there exists 
a different type of high frequency overshoot in transient 
responses. The former overshoot behavior can be detected by 
evaluating the displacement difference equation after removing 
acceleration in the limit  , whereas the latter overshoot 
can be disclosed by assessing the eigenvector matrix in the limit 
 . Since both CRM and TLM exhibit a weak instability, 
they will give inaccurate results or even instability in high 
frequency transient responses. Hence, their applications are 
very limited. On the other hand, CEM involves no such an 
adverse property, and thus, it is preferred over CRM and TLM 
in structural dynamics and earthquake engineering 
applications.  
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