International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:5, No:6, 2011

W-CAS: A Central Users Authentication and
Authorization System for Enterprise Wide Web
Applications

Sharil Tumin, Sylvia Encheva

Abstract—Centrally controlled authentication and authorization
services can provide enterprise with an increase in security, more
flexible access control solutions and an increased users’ trust. By
using redirections, users of all Web-based applications within an
organization are authenticated at a single well known and secure
Web site and using secure communication protocol. Users are first
authenticated at the central server using their domain wide credentials
before being redirected to a particular Web-based application. The
central authentication server will then provide others with pertinence
authorization related particulars and credentials of the authenticated
user to the specific application. The trust between the clients and the
server hosts is established by secure session keys exchange. Case-
studies are provided to demonstrate the usefulness and flexibility of
the proposed solution.

Keywords—Authentication, Authorization, Security, Protected
Web-based Applications.

I. INTRODUCTION

Aperson becomes an authenticated user of a system by
providing correct credentials during the process known
as sign-on process. These credentials are normally in the
form of a pair of user-identification and password, shared
between the authenticating system and the user. At the process
of sign-on the person will be identified (i.e. providing a
valid user-identification) and authenticated (i.e. providing the
correct password in relation to the given user-identification).
A user is signing-on into a system in order to make use of
an application or accessing a resource. Authentication only
perform users validation. Access controls and the related
permissions to applications and resources are done by the
process of authorization. Access and action permissions are
normally defined by domain wide groups memberships and
roles.

Authentication preceded authorization, in another word,
to be authorized one must be authenticated first. In simple
application, general permissions are given when a user is
authenticated, without the need for further authorization pro-
cesses. Normally, permissions are given at different points
in an application in relation to what groups and roles an
authenticated user is a member of and has. Permissions are
granted or denied dynamically in relation to user’s work flow
within a Web-based application and are defined within the
application. Groups and roles are providing authorization data

S. Tumin is with IT Department, University of Bergen, PO Box 7800, 5020
Bergen, Norway, e-mail: edpst@it.uib.no

S. Encheva is with Faculty of Technology, Business and Maritime Sciences,
Stord/Haugesund University College, Bjgrnsonsg. 45, 5528 Haugesund, Nor-
way, e-mail: sbe@hsh.no

of a user. Mapping these information in to permissions is done
by the applications.

In this article we describe a system for a central authentica-
tion and authorization services for enterprise wide Web-based
applications called W-CAS, that provides centralized services
for security clearance of users, groups and roles information
within an organization.

The main purposes of the W-CAS system are:

« To provide centrally managed sign-on and access control

mechanism.

« To provide flexible and customisable access control front-

end solutions for all Web-based applications.

« To increase security by protecting users’ credentials and

permissions on a single authoritative server.

o To reduce complexity by introducing simple process

patterns for users’ authentication and authorization.

« To promote and increase users’ trust to the enterprise

Web-based systems.

Nowadays, Web-based applications and services are com-
mon within any enterprises as a part of their ICT (infor-
mation and communication technology) infrastructure. Web-
based applications and services are used to provide computing
and information services for; 1) the employees internally, 2)
business partners externally, and 3) general public globally.
Many of these services are deployed as protected Web-based
applications secured by users authentication and authorization.
These secure Web sites pose management and engineering
problems on how to securely manage users’ credentials and
permissions and to ensure secure mechanism for sign-on
and on-demand permits granting procedures. Users located
anywhere geographically can connect to these secure Web sites
at any time.

The W-CAS is a combination of secure Web-based appli-
cations and service, deployed on a secure server with a well
publicized URL (Uniform Resource Locator) and generally
known throughout the entire enterprise providing users with a
consistence sign-on Web form. Clients (users’ Web browsers)
are using secure HTTP (Hypertext Transfer Protocol) to com-
municate with the server. The clients are HTTP redirect to
the W-CAS from a protected Web-based application by using
Web redirection mechanism. By creating session keys for each
authenticated user, the W-CAS can provide authorization data
to a protected Web-based application on-demand at a latter
time in a user’s work flow.

The W-CAS can also provide different types of SSO (Single-
Sign-On) services for the entire enterprise. SSO can be em-

550

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:5, No:6, 2011

Authoritative

LOAF SEAVER

Fig. 1. SEBRA: IdM at University of Bergen

ployed; 1) to implement OT (one time) sign-on (SSO-OT)
and using session keys or tickets to access multiple protected
independent software systems without the need of further
authentication, and 2) to implement a single CM (credential
mapping) sign-on (SSO-CM) mechanism on different systems
using different locally defined credentials and authentication.

We include in this article two case-studies of practical use
of W-CAS in an ICT environment of a medium size university,
one case describing SSO-OT and the other describing SSO-
CM. The examples in the case-studies are included here
to demonstrate the usefulness and flexibility of W-CAS in
providing simple solutions to different authentication and
authorization needs within an organization.

II. BACKGROUND

A central IdM (Identity Management) system is a necessary
condition within an organization in order to provide a system
for a central authentication and authorization services.

The ideas of CAS (Central Authentication Service) are not
new. There are several different CAS systems already success-
fully implemented at different sites around the world. These
different implementations are providing solutions to different
but similar problems related to Web-based authenticator and
SSO.

A. Identity Management

An IdM is a centrally managed database concerned with
identifying individuals (i.e. system users) within different IT

(information technology) systems for the entire enterprise. An
IdM deals with:-

o persons information and user accounts: Accounts are
associated to persons, preferably one account to a person.
In order for a person to access and use system resources,
a user account must be assigned, normally by associating
a user-identifier with that person. The user-identifier will
be used to identify the person to the system. A user-
identifier is a short alphanumeric string, e.g. ‘ntu0675’
and ‘edpkm’.

e accounts’ credentials: While user-identifier is for user
identification, user’s password is for user authentication.
This (user-id, user-pwd) pair is normally used as creden-
tial. To be authenticated, a person provides her user-id
to identifier herself and her user-pwd to prove that she is
who she said she is. Users’ passwords are not stored in
clear text in the IdM databse, the passwords are stored
as one-way cryptographic hashes. e.g. unix-crypt, MDS5,
SHAI, and SHA2S55.

o accounts’ roles and permissions: User authentication is
just the first half of an access control mechanism. The
second and very important half is user authorization. Most
authorization mechanisms are based on users’ groups
memberships. A particular group is directly mapped to
a particular role. All users having that particular role
will be defined as member of the group. Permissions
are granted by the applications to users based on users’
groups memberships.

e accounts’ security policies: Implement password com-
positions and password aging policies. Send warning
to users to change their passwords at appropriate time
saying that accounts with aged password will be disabled.
Keeping track of accounts periods and timely disabling
of overdue accounts. Manage users authorization policies
with the help of groups’ membership. Since authoriza-
tion policies are closely related to the IT resources and
applications, the management of groups and roles are del-
egated to the local resources and applications managers.
A distributed management model implemented as a Web-
based application has proved to be a success.

Conceptually, it is easier to look at an IdM as a system
with two main components; 1) Authoritative, and 2) Operative,
Figure 1. The main function of the Authoritative component
is to gather authoritative data from external data source;
1) Paga (employee’s data), 2) FS (students’ data), and 3)
manually approve data by approvers and administrators for
person not registered in Paga or FS, for example guest
researchers. The main function of the Operative component is
to provide operational authentication and authorization data to
the IT systems within the organization by providing RESTful
(Representational State Transfer) services from the IdM server
or LDAP (Lightweight Directory Access Protocol) search
services.

For authorization processes depending on complex data
containing nested structure needed for authorization, RESTful
services are preferred. Normally a simple LDAP search is
sufficient for a Web-based application to determine user’s

551

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:5, No:6, 2011

authorization at any stage of application’s work-flow. The W-
CAS is implemented to provide authorization data as a part of
a user validation process.

B. Similar Systems

The W-CAS is very similar to some other implementations
of CAS, Jasig-CAS, OpenlD, Shibboleth, Pubcookie, JOSSO,
SAML, CoSign, WebAuth, CookieAuth, and OpenAM [5], of
which two will be briefly discussed in the following.

1) Jasig-CAS: Jasig-CAS [2] is primarily an authentication
system written in Java and originally created by Yale Univer-
sity to provide a trusted way for an application to authenticate
a user. Yale-CAS became a Jasig (Java Architectures Special
Interest Group) project in December 2004. Jasig-CAS is
widely used by educational institutions, especially many big
universities.

Yale-CAS works using two client redirects (1,2) and one
HTTP GET (3):

1) https://s.y.z/cas/login?
service=http://a.y.z/app

2) http://a.y.z/app?ticket=WXYZ

3) https://s.y.z/cas/servicevalidate?
service=http://a.y.z/app&ticket=WXYZ

If a valid credential is provided at stage (1), the CAS
server would redirect the user’s browser to URL described in
(2). Now if the CAS server at stage (3) received valid service
and ticket from the client then the CAS server would respond
with the authenticated user identification from the sign-on
process at (1).

2) OpenID: OpenlD [4] was created by an open source
community in the summer of 2005. Its prime concern is to
provide an open standard on how users can be de-centrally
authenticated. Users may choose any OpenlD provider to
consolidate their digital identities. Web-based applications
have no need to provide their own authentication services.
Several large organizations either issue or accept OpenlDs.
These including among others, Google, Facebook, Yahoo!,
Microsoft, AOL, MySpace, Universal Music Group, France
Telecom, and Telecom Italia.

To have the benefit OpenlD services, a user must first
register to a OpenlD provider. Here the user chooses her
credentials, commonly a pair of user-identifier and password.
The user also provide personal information which may or may
not be true. OpenID does not check the validity of information
given by users. OpenID assumes users truthfulness.

OpenlID authentication works as follows:

1) An unauthenticated user provides her OpenlD
(e.g. bob2pent.myopenid.com) to the Web-bases
application (e.g. see.gettapp.com) that supports OpenlD
authentication.

2) The application redirects the user to OpenID provider
myopenid.com.

3) The provider checks the user’s credential (i.e. user-identifier
and password).

4) When validated, the provider will present the user
with an OpenID verification, stating the application
see.gettapp.com and what personal data the user
allows to be shared with the application.

5) The provider myopenid.com redirects the authenticated
user back to the application see.gettapp.com.

Anyone can freely choose any (not already used) OpenlD
credentials and any OpenlD providers. A user can freely
choose any OpenlD provider where she is registered for
authentication at any Web-base application site that supports
OpenID. There is no central authority that dictates these
choices. A person can register with many different personals
to one or many different OpenlD providers. There is no
central validation authority.

C. A Brief Look at Web Technologies

Java Python PHP Perl Ruby

JBass Fope Zend Maypole F.ail

Mamed (Damam Mame Systeém saner)

Raoited (Nebwork roubing)

Fig. 2. Software Tools for Web Developments

The best way to present the Web Technologies used in
deploying a Web-based system of applications is to summarize
their relationships and dependencies in a technology stack
diagram. Each row in Figure 2 shows different types of
software technologies with examples of the different choices
of tools. These technologies are arranged from bottom to top
in these order; 1) Internet routing, 2) Internet naming services,
3) Directory services, 4) Database servers, 5) Web servers, 6)
Web framework, and 7) Programming languages.

Users’ credentials and groups memberships can be stored
at and served from directory servers or database servers. The
used of LDAP for directory services is more common in a
Unix or Linux environment than in a Windows environment
where the use of AD (Active Directory) is more prevalent. AD
is a Microsoft customized LDAP with specialized schemas for
Windows OS (Operating System). In an older Unix environ-
ment, NIS (Network Information Service) developed by Sun
Microsystems Inc. (bought by Oracle Corp. 2010) can still be
in use, albeit no longer as common as before.

There are diverse possibilities and combinations for Web
developers to choose from in terms of technologies. Recently,
many Web frameworks were being developed based on MVC
(Model-View-Controller) concept, to help Web developers to
design, develop, and deploy Web-based applications. Web
frameworks provide developers and users alike with; 1) rapid

552

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:5, No:6, 2011

development cycles, 2) increase in operational security, and 3)
sustainable deployment.

The successful deployment of Web-based systems depends
very much on three technological innovations of our modern
time; 1) the Internet, 2) the RDBMS (Relational Database
Management Systems), and of course 3) the World Wide Web.

The Internet provides an open technological framework in
which a computer can communicate with other computers over
large distances across organizational and national boundaries
spanning the whole globe. A database can provide a persis-
tence data storage with relational structures for easy informa-
tion storage, search and retrieval. The Web became popular
due to the simplicity in its concept, design and implementation.
The Web is modeled on client-server network architecture
with stateless request-response mode of communication. The
Web is built to provide easy and accessible tools for network
programming.

These three technological innovations changed the way
computer applications are perceived; 1) from a single user,
single machine to multiple users and multiple machines, 2)
from a stand alone application to collaborative applications,
and 3) from a close private system to an open shared systems.

III. W-CAS

Enterprises are providing Web-based services and appli-
cations internally to employee and externally to costumers.
Much of the traditional PC-based applications running stand-
alone on personal computers are now replaced by Web-based
applications. There are many reasons why these are so and
among them are; 1) operative systems being independent, 2)
centrally managed databases, 3) simplification of sharing of
data, documents and reports, and) reduction of operational
costs.

Web-based applications that replaced office automation pro-
grams for example need to be protected by some means of
authentication and authorization mechanisms. All such Web-
based applications have sign-on pages and presentation of
these very much depends on the page style of the applica-
tions. These Web-based applications are deployed from 1)
commercial softwares, 2) open-source softwares, and 3) in-
house developed softwares. The authentication actions behind
these sign-on pages are LDAP authentication mechanisms as
shown in the Operative side of Figure 1.

There are many reasons why a centrally managed IdM is a
good strategic security policy for both an organization and
users. One of the reasons is that each user needs only to
remember one credential. The same user-identification and
corresponding password can be used for user’s validation on
all protected resources and applications deployed and managed
by the organization. Due to the enterprise wide implication to
security when a credential is lost or stolen, the issue pertinence
to users’ credentials protection is becoming more important.

One way to reduce the risk of credentials being stolen by
phishing is to provide enterprise users with one and only one
secure sign-on site for all enterprise Web-based application
authentication procedures. The users will be informed and
educated about the sign-on URL (Uniform Resource Locator),

W-CAS
E.
*-
-'... kY
,

K B
1) 18 1ier ogin “ I
. E.
Wab FEsar Wab &pp
W-CRS

b i

£
&
¥

by gt il i Linl?

P N
'y "l
Wil Ui Web App

Fig. 3. W-CAS: Sign-on

the page layout, the host and the host’s HTTPS (Hypertext
Transfer Protocol Secure) TLS (Transport Layer Security)
certificate details. As an enterprise-wide security policies; 1)
all users are informed not to provide sign-on credentials to
other URLSs than the official central authentication server, and
when in doubt the users can examine the TLS certificate
details, 3) all Web-based applications must use CAS for
authentication and authorization by providing clients with the
correct HTML (HyperText Markup Language) redirection.

A. Implementation Model

The authentication process model can be simply explained
using a series of figures as shown in Figure 3. The basic

553

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:5, No:6, 2011

mechanism is similar to Yale-CAS and OpenlID, the only
differences are in the implementation details and focus areas.

While Yale-CAS and OpenlD were designed to be as
generic as possible, W-CAS is designed to solve specific
problems. While Yale-CAS and OpenlID are for use in an open
community, W-CAS is for use in a closed organization. W-CAS
uses similar pattern in the communication protocol, however
the data communicated are specifically problems oriented and
depend on the need of the client’s Web-based application.

W-CAS is designed to satisfy both authentication and
authorization needs for Web-based applications within an
organization. User rights to a resource, service or application
are permissions to perform certain actions in relation to
certain conditions determined by users’ roles at particular
point in time.

Rightstser

{resources} = Per"”'sszon{actions}||ROZ€5{conditions}

Initially, an authenticated user has the general role of
valid member of the organization, while more specific roles
will depend on groups memberships. A valid member of the
organization is an implicit role conditioned to any permits
granting process of a resource or a group resources.

Given that Right := o, Permission := ¢, and Roles := p;
an authenticated user bob having rights on resources «, and /3
with read and update permissions given that he is a member
of A and B groups, can be symbolically represented as:

oY% 5y = Pireadupdate |lPans)

In this scenario, W-CAS provides the Web-based application
with:
1) authentication: validation process that validate, bob is
bob.
2) authorization: validation process or provide data for
checking that bob € AN bob € B.

Note that p;anpy is equivalent to papp, and paupy is
equivalent to p4|pp. Where the role condition is true when
both are true for psopp and the role condition is true when
either one or the other is true for p4|pp. This is to emphasis
that the Web-based application can check role conditions
sequentially, one condition at a time.

B. Implementation Details

The W-CAS is implemented using simple combinations of;
1) session Web cookies, 2) HTML redirections, and 3) REST-
ful query. Both the W-CAS server and the clients need to follow
a prescribes protocol conceptually described in Figure 3.
The W-CAS server is implemented in Python programming
language with the support of Apache Web server module
mod_python. In the examples, the client side is implemented
in PHP programming language.

When referring to the numbered stages as shown in Figure 3,
please find some detail explanations corresponding to the
following numbered items:

1) Is user login? There are several ways to check whither
a user is authenticated (i.e. login) and one common
way is to check for session cookie returned by the Web
client. However, the first page of Web-based application
normally assumes that a user is not yet authenticated.

2) No! Redirect to W-CAS — The Web application will
calculate a hello session cookie. Together, the cookies
and the redirection directive to W-CAS server using
’Location are sent to the Web client (i.e. users Web
browser) in the HTML headers. The browser will save
the hello session cookie and be redirected to W-CAS.
See Listing 1.

3) Correct credential? The user is now interacted with the
W-CAS which asks the user to provide correct credentials
(i.e. user-identification and password) for user valida-
tion. Security policy on how many retries are allowed
can be enforced at this stage. Anyway the user needs to
provide correct credentials in order to proceed.

4) Yes! Redirect to Web App, W-CAS session check — The
user is now authenticated. The W-CAS calculates a W-
CAS-Session for this sign-on and redirects the user’s
browser back to the Web application server at a specific
URL declared in the configuration at W-CAS together
with the calculates session. The W-CAS-Session is an
encrypted (BlowFish) data containing all the necessary
information in order to establish trust communication
protocol with the Web application server. See Listing 2.

5) Correct session? The main purpose of this Web page at
the application server is to receive the W-CAS-Session
by the redirection and to send it back the W-CAS using
RESTful query to a specific URL. The user will not
even notice this action. The user will be redirected to the
protected application if the session verifies to be correct
one. See Listing 3.

6) Yes! User is now authenticated — The send back W-CAS-
Session will then be decrypted and all its contents are
unpacked. At the Web application initial session hello,
the user-identification and the user’s role are returned.
The Web application will then make a session to store
the authenticated user and redirect the user’s browser
to the protected application. The user can now continue
using the application. See Listing 4.

The initial hello session sent from the application’s login
page to the W-CAS is to establish trust between the application
and the authentication server. In the final stage of the protocol,
the W-CAS returns the same hello with the authenticated user-
identification and user role. Since communication between
the application server and the W-CAS are done over HTTPS
then there is minimum risk for “man in middle attack”. Other
programs can not sent a fake user authentication confirmation
(i.e. hello:uid:grp) to the application server since the hello
session is not known to them.

In this implementation the W-CAS-Session is an encrypted
data containing all the information to securely protect the
authenticated user-identifier by matching this data with IP-
address of the application server, [P-address of Web browser,
timestamp and the value of hello. The W-CAS-Session is

554

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:5, No:6, 2011

Fig. 4. MachForm: Sign-on

W-CAS
I |.\L\<
¥ --l/.--.ﬂu- H
= —— b
F . s T o
11 ey ara rreye -
——— =
W Usnr Wab App

Fig. 5. MachForm: Authentication Mechanism

produced by login W-CAS:login and consumed by W-CAS:auth
triggered by RESTful query from application server. The
query is parameterized by the application name and W-CAS-
Session. The key to decrypt W-CAS-Session is found in the
configuration indexed by the supplied application name.

IV. CASE-STUDIES

In this section we describe case studies of two actual
applications employing W-CAS mechanism for authentication
and authorization. In the first case, W-CAS is used as the
basis for SSO-OT, while in the second case W-CAS is used
to support SSO-CM. The first case is a commercial software
with source code with possibility for customizable work. The
second case is a commercial software with close code and
there is no possibility for customization.

A. Case 1: Machform

Machform from Appnitro [3] is a Web-based application
which provides user with Web-based Ul (user interface) for
designing Web form. Non technical users can design and
publish nice looking and usable Web forms quickly and easily
without the need to know HTML, CSS (Cascading Style
Sheets) and JavaScript.

In the original, the product supports single user only. A lot
of work has been done to convert a single user application

into multi-users application that also supports ACL (Access
Control List) mechanism for sharing Web forms among users
with different permissions and roles; 1) admin - all permis-
sions, 2) designer - update permission (i.e. read and write),
and 3) friend - read only permission. A few Web pages in the
work flow loop is shown in Figure 4.

The application is written in PHP with PostgreSQL database
back-end. In order to support multi-users environment simple
modifications were made on; 1) user authentication 2) data
model that will support Web forms sharing and ACL. There
are no local users defined in the application. All users with
membership to a specific group defined in the IdM are allowed
to access the application. The W-CAS is used to authenticate
users and to verify group membership. The details of the sign-
on is shown in Figure 5.

B. Case 2: Voicemail

The VoiceMail is a part of telephone services at a VIP2000
telephone system. The VoiceMail provides a Web-based appli-
cation similar to telephone-based dialing for voice mail where
one picks up the phone and dials a service number and then
provides four digits PIN code. Similarly, in the VoiceMail
Web-based application, a user provides her telephone number
and the same four digits PIN to a Web form to get access to
the telephone services provided by VIP2000 system.

The VoiceMail is a closed commercial system, which is ag-
gregated by a collection of a compiled binary code, JavaScript
and a MySQL database back-end. The only way to modify
the interaction with the sign-on URL is by using HTML
GET method instead of the HTML POST method via the
provided Web form. To use W-CAS for authentication, the user-
identification and password credentials need to be mapped to
corresponding telephone number and PIN. Person telephone
numbers are stored in the IdM but not the PIN codes, therefore
in the W-CAS login form for VoiceMail, a user needs to
provide; 1) user-identification, 2) password, and 3) PIN as
shown in Figure 6. When the user verification is successful
the W-CAS will redirect the user to the VoiceMail application
together with the authenticated user’s telephone number and
the given PIN.

The VoiceMail application is deployed as a closed, stand-
alone system without the possibility of supporting HTTPS.
Communication between the browsers and the system is on
an insecure channel where credentials (i.e. telephone number
and PIN) are communicated in clear text. To increase the
operational security, the VoiceMail application is placed behind
a reverse proxy server (nginx) coupled with PHP-FPM (PHP
FastCGI Process Manager) as shown in Figure 7.

V. CONCLUSION

This article demonstrates a practical deployment of CAS
with two different applications. In an open source application,
some simple customization needs to be done supporting the
W-CAS protocol. In a closed code application, in order to use
W-CAS authentication mechanism, users are diverted from the
application sign-on page to the W-CAS sign-on page. After
user verification the W-CAS must then do the sign-on on the

555

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:5, No:6, 2011

Fig. 6. VoiceMail: Sign-on

Wl e g FHP-FPM weh Aap

Fig. 7. VoiceMail: Authentication Mechanism

behalves of the user by sending either a HTML GET method
or HTML POST method to the application’s sign-on URL with
all the needed credentials.

There are many well designed and well establish CAS
systems already for an organization to choose from. However,
these CAS systems may not satisfy the need of your orga-
nization for solving specific security problems imposed by
local security policies and ever changing federal regulatory
directives, for example mandatory installment of TFA (Two
Factor Authentication) for certain Web application. With a
basic W-CAS already deployed, a mechanism for a TFA can
easily be implemented as an extension.

The best way for security engineers are to understand the
basic concepts of CAS whereby a centrally authentication
system can be designed and deployed to meet the organization
operational security standards.

This article is an attempt to show how a CAS can be
installed using these basic concepts and tools easily and
effectively, with the possibilities for add-ons, thus supporting
sustainable deployment.

APPENDIX A

Listing 1. Hello session and redirect to W-CAS

<?Tphp

// login.php

// seed with microseconds
function make_seed () {

list ($usec, $sec) = explode(’.’, microtime ());
return (float) $sec + ((float) $usec x* 100000);

mt_srand (make_seed ());

$hello = hash(’ripemd160’, mt_rand (). mt_rand ());

session_start ();
$_SESSION|[" hello]

header (”Location:_https ://cas.org/myapp/login

= $hello;

?app=myapp&hello=$hello™);
>

Listing 2. 'W-CAS session and redirect back to Application server

login.py
if chk_auth(s):
create W-CAS

session

client = clientIP (r)
appserver = apps[s[app’ |][ip’]
appkey = apps[s[’app’11[key’]
appurl = apps[s[app’]][url’]

ts = '%s’ % int(time.time ())

hello = s[’hello’]

key = appserver

+client+ts

key = key.replace(’.’, '0’)
b = Blowfish.new(key,
Blowfish .MODE_CBC)

sesid = s[’user

data = b.encrypt(sesid+’ . %\

']

(8—1len(sesid)%8))
user_ses = binascii.b2a_hex(data)
b = Blowfish.new(appkey,

Blowfish .MODE_CBC)

sesmsg = "%s:%s:%s:%s:%s’ % \

(user_ses ,
client , ts,

data = b.encrypt(sesmsg+’ . %\

(8—1len (sesmsg

ses = binascii.b2a_hex(data)
uri = %s?ses=%s’ % (appurl,

appserver ,
hello)

)%8))

ses)

redirect back to application server

util . redirect(r
return

, uri)

Listing 3. Welcome and Check W-CAS Session

<?php
// welcome . php
$ses = $_GET[”ses”

$base = ’https://cas.org/cas/myapp/auth’;

13

$query = “app=myapp&ses=$ses”;
$url = ”$base?S$query”;
// get who is authenticated

$res = file_get_contents ($url);

$prm = split(’:’,
session_start ();
$hello = $_SESSION

$res);

[*hello’];

// check hello cookies
if ($prm[0] != S$hello) {

echo ’Invalid.
exit;
// check valid use

session’;

r

if ($prm[1] == ’nobody’) {
echo ’Invalid_user’;

exit ;
// Authentication

completed .

// Redirect to application

header (”Location: https :// myapp.org/app.php”.

72id=""$prm [1]. . "&grp="".$prm [2]);

exit;
>

556

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:5, No:6, 2011

Listing 4. Check W-CAS Session

auth.py
def index(r,s):

[1]
[2]
(3

nobody = ’'NONE:nobody:nogroup’
if not s.has_key(’ses’) or \
not s.has_key(’app’):
r.write (nobody); return ’exit’
else:
appserver = apps[s[’app’]][ip’]
appkey = apps[s[’app’]1[key’]

try:

msg = binascii.a2b_hex(s[’ses’])
except:

r.write (nobody); return ’exit’
try:

b = Blowfish.new(appkey,
Blowfish .MODE_CBC)
ses = b.decrypt(msg)
except:
r.write (nobody); return ’exit’
ses = ses.strip ()
try:
s_user, s_appserver, \
s_client, s_ts, s_hello =\
ses.split(’:’)

except:
r.write (nobody); return ’exit’
if appserver != s_appserver:

request from wrong app server
r.write (nobody); return ’exit’
try:
msg = binascii.a2b_hex(s_user)

except:
r.write (nobody); return ’exit’
client = clientIP(r)
s_ts can be use to enforce
period of validity check

key = s_appserver+client+s_ts
key = key.replace(’.’, ’0’)
try:

b = Blowfish.new(key,
Blowfish .MODE_CBC)

uid = b.decrypt(msg)
except:

r.write (nobody); return ’exit’
all OK!
grp = get_group (uid)
rep_msg = "%s:%s:%s’ % \

(s_hello, uid, grp)
r.write(rep_msg); return ’exit’

REFERENCES

H. Kopka and P. W. Daly, A Guide to BIgX, 3rd ed. Harlow, England:
Addison-Wesley, 1999.

Jasig, Central Authentication Service Project,

http://www.jasig.org/cas, 2011 (last acc.).

Machform, PHP HTML Form Builder - Mailer Form Creator,
http://www.appnitro.com, 2011 (last acc.).

OpenlD Foundation, Safe, faster, and easier way to log in to web sites,
http://openid.net/, 2011 (last acc.).

Wikipedia, Central Authentication Service,
http://en.wikipedia.org/wiki/Central_Authentication_Service, 2011 (last
acc.).

557

