
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

743

Abstract—Sequences of execution of algorithms in an interactive 
manner using multimedia tools are employed in this paper. It helps to 
realize the concept of fundamentals of algorithms such as searching 
and sorting method in a simple manner. Visualization gains more 
attention than theoretical study and it is an easy way of learning 
process. We propose methods for finding runtime sequence of each 
algorithm in an interactive way and aims to overcome the drawbacks 
of the existing character systems.  System illustrates each and every 
step clearly using text and animation. Comparisons of its time 
complexity have been carried out and results show that our approach 
provides better perceptive of algorithms. 

Keywords—Algorithms, Searching, Sorting, Visualization.

I. INTRODUCTION

 ISUALIZATION of algorithms’ sequence is an   
important process to learn various hidden steps, which 

are involved dynamically. The advantages of visualizing 
algorithms are: Easy to learn with different set data, 
Understand hidden steps of algorithms, Memory usages and 
Time management strategy. The first well-known 
visualization presented by Baecker, it was in videotape 
format. It shows the animation of nine different sorting 
algorithms. This videotape allows students to watch the 
behavior of the algorithm rather than try to imagine its actions 
from a verbal explanation or from several static images [1]. 
Brown Algorithm Simulator and Animator (BALSA) is a major 
interactive algorithm animation system developed at Brown 
University [2]. In this system Students were able to control the 
animation by starting, stopping and replaying the animations. 
A later version BALSA-II added color and some rudimentary 
sounds. Brown University created another algorithm 
animation system. It does not erase and redraw each image as 
the previous animation systems did. It is able to produce 
smoother more cartoon-like animations. A later version of this 
system is XTANGO[3]. A New Interactive Modeler for 
Animations in Lectures (ANIMAL) is a newer visualization 
system incorporating lessons learned from pedagogical 
research Developed at the University of Siegen in Germany 
[4]. In this paper, some of searching and sorting algorithms 

    R.Bremananth is Professor, with Dept. of Computer Applications, Sri 
Ramakrishna Engineering College, Coimbatore, Tamil Nadu, India-
641008(91-422-2461588,2460088, e-mail: bremresearch@gmail.com).  

Radhika.V. is a research student with Dept. of Computer Applications,Sri 
Ramakrishna Engineering College, Coimbatore, Tamil Nadu , India (e-mail: 
vj.radhika@gmail.com). 

Thenmozhi.S is also a research student with Dept. of Computer 
Applications, Sri Ramakrishna Engineering College, Coimbatore, Tamil Nadu, 
India (e-mail: tthenmozhis@gmail.com). 

are explained visually. Interaction with this tool can be 
achieved through the exploration of existing default 
visualizations, through the direct manipulation of graphics 
objects. This tool is designed for three different groups of 
users such as students, instructors and software developers. 
This will be very interactive which means the user verifies the 
algorithms by different set of data. We explain the following 
algorithms in this paper.  

Searching Algorithms: 
1) Sequential Search 
2) Binary Search 
3) Interpolation  Search 

Sorting Algorithms: 
1) Selection Sort 
2) Bubble Sort 
3) Shell Sort 

Section 2 describes visualization of searching algorithms 
and Sorting algorithms have been discussed in section 3. 
Section 4 deals result and analysis of both kinds of algorithms. 
Finally, concluding remarks and future enhancements are 
described in section 5.  

II. VISUALIZING SEARCHING TECHNICS

Interaction with our system can be achieved through the 
exploration of existing default visualizations, through the 
direct manipulation of graphical objects. This will provide the 
way by selection of concepts (Searching or Sorting) which we 
want and also select the algorithm based on the selected 
concept. The inputs for the selected algorithm are obtained 
from the user. Visualization process starts by clicking the start 
button. The Buttons Pause and Resume are used to suspend 
and resume the process of visualization. In both Searching and 
sorting algorithms, an appropriate message is displayed for 
each process. In Searching algorithms, when process starts, 
the component (labels) that contains the element to be 
searched moves through the list based on the selected 
algorithm until a match is found.  In sorting algorithms, when 
process starts, the positions of the components (labels) that 
contain the elements to be sorted are interchanged. This 
process continues until all the elements are sorted. It contains 
the following algorithms. 

A. Sequential Search 
In searching algorithms, the user has to give how many 

number of input, the set of data and a number to be searched. 
Then select the particular algorithm from the list and then the 

Visualization of Searching and Sorting 
Algorithms

Bremananth R, Radhika.V and Thenmozhi.S 

V



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

744

visualization of the selected algorithm is shown with the given 
inputs. A Sequential search is one of a search method, also 
known as linear search that is suitable for searching a list of 
data with a particular value. It operates by checking every 
element of a list one at a time in a sequential order until a 
match is found. 

Algorithm Sequential Search (List, Target, N) 

List     -the elements to be searched 

Target -the value being searched for 

N      -the number of elements in the list 

pos     -the value of the position from where repaint starts 

Step1: calls ct.d()  //function that starts the timer 
Step2: For i=1 to N do 
Step3: if (Target=List[i]) then  
Step4: Stop the program 
Step5: End if 
Step6: pos= i//stores the position 
Step7: call repaint(); 
// It moves searching element through out the list                                
// until a match is found                   
Step8: End for 
Step9: calls ct.d1() //function that stops the timer 

Fig.1 illustrates choosing the algorithm from the given list. 
Timer is started with the algorithm using the function ct.d ().
The element to be searched is called the Target. For elements 
1 to n the Target is compared with the elements in the List
starting from the first element.  In each step the index value of 
the element in the List with which the Target is compared is 
stored in variable pos.

Fig. 1 Sequential search- Choosing the algorithm 

Then repaint() function is called to move the element to  the  
next position of  the  List as  depicted in Fig.2.   

Fig. 2 Compares second element with the target 

When the Target matches with the element of the List the 
program stops as shown in Fig.3 and timer is stopped by 
calling the function ct.d1().

Fig. 3 Sequential search - Compares third element with the 
target and match is found 

B. Binary Search 
 In binary search, we first compare the target with the 

element in the middle position of the array. If there's a match, 
we can return immediately. If the target is less than the middle 
element, then the target must lie in the lower half of the array; 
if the target is greater than the middle element then target must 
lie in the upper half of the array. So we repeat the procedure 
on the lower (or upper) half of the array. 

Algorithm Binary Search (List, Target, N) 

List         -the elements to be searched 

Target        -the value being searched for 

N             -the number of elements in the list 

pos              -the value of the position from where repaint                           

                     starts

thread_var -variable to control the movement of the labels               

                    to be exchanged 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

745

Step1: calls ct.d()//function that starts the timer  
Step2: start=1 
Step3: end=N 
Step4: while start<=end do 
Step5: middle= (start+end)/2 
Step6: if (List[middle] < Target)  then 
Step7:  start = middle + 1 
Step8:  pos=start 
Step9:  While (thread_var<3) do 
Step10: call repaint( ) 
 // It moves searching element through specified list  
//until a match is found    
Step11: End While   
Step12:  End if               
Step13: if (List[middle] > Target)  then 
Step14:  end = middle - 1; 
Step15:  pos =end; 
Step16:  call repaint( ) 
 // It moves searching element through specified list  
//until a match is found      
Step17:  End if               
Step18: if (List[middle] =Target)  then 
Step19: Stop the program 
Step20: End if 
Step21: End while 
Step22: calls ct.d1()//function that stops the timer 

The Binary search option is chosen from the given list as in 
Fig.4. 

    Fig. 4 Binary search- Choosing the algorithm 

The program starts and consecutively the timer is also 
started using the function ct.d(). The value 1 is stored in 
variable start and N in variable end. It finds the middle value 
using the formula middle = (start + end)/2. It compares the 
middle element with the Target. When the Target  is greater 
than the middle element , it starts searching the upper half by 
assigning  start=middle+1 and storing the start value in 
variable pos and repaint() function is called to move the 
Target element to the first position  of the upper half as shown 
in Fig.5. 

Fig. 5 Binary search searching the upper half 

It applies the above steps for the upper half until the Target
is found. It stops when Target is found as illustrated in Fig.6. 
When the Target is less than the middle element ,the program 
starts searching in the lower half by assigning  end=middle-1 
and end value is stored in variable pos and repaint() function 
is called to move the Target element to the lower half. It 
applies the above steps for the lower half until the Target is 
found.

When Target is equal to the middle element the middle
value is stored in variable pos and repaint() function is called 
to place the Target in middle. Then the program stops and the 
timer is stopped using the function ct.d1(). It searches only in 
a sorted list. When the list is unsorted, it sorts the list first and 
then starts searching. 

                Fig. 6 Binary search- Element found 

C. Interpolation Search 

Interpolation search is an algorithm for searching a given 
target value in an indexed array that has been sorted in 
ascending order. In each search step it calculates where in the 
remaining search space the target might, be based on the 
values at the bounds of the search space and the value of the 
target, usually via a linear interpolation. The value actually 
found at this estimated position is then compared to the target 
value. If it is not equal, then depending on the comparison, the 
remaining search space is reduced to the part before or after 
the estimated position.  

Algorithm Interpolation Search (Target, N) 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

746

N                 -the number of elements in the list 

pos               -the position of the first element  

                     to be exchanged 

pos1            -the position of the second element to be  

                     exchanged 

flg                -temporary variable 

Target         -the value to be searched 

thread_var  - Variable to control the movement of the labels  

                     to be exchanged

Step1: calls ct.d()//function that Starts the timer 
Step2: calls Interpolation (list, Target) 
Step3: calls ct.d1 ()//function that stops the clock 

Interpolation ( sortedArray, Target) // Returns index of
//Target in sortedArray, or -1 if not found 

Step1: low = 0; 
Step2: high = sortedArray.length - 1; 
Step3: while (sortedArray [low] < Target && sortedArray 
[high] >= Target) do 
 Step4: Mid = low + ((Target - sortedArray [low]) * (high - 
low)) / (sortedArray[high]-sortedArray[low])  
Step5: pos=mid 
Step6: calls repaint ()
Step7:  if (sortedArray[mid] < Target) then 
Step8:  low = mid + 1; 
Step9: pos=mid 
Step10: calls repaint () 
Step11: else if (sortedArray[mid] > Target)  then 
Step12: high = mid - 1; 
Step13: pos=mid 
Step14: calls repaint () 
Step15: else 
Step16: pos=mid 
Step17: calls repaint () 

Step18: End While 
Step19: if (flg=0) then 
Step20: if (SortedArray [low] =Target) then 
Step21: pos=low 
Step22: calls repaint() 
Step23: Else 
Step24: pos=0 
Step25: calls repaint() 
Step26: End if 

First the Interpolation search option is chosen from the 
given list as in Fig.7.The timer is started using the function 

ct.d(). When the list is unsorted, it sorts the list first and then 
starts searching. 

Fig. 7 Interpolated search- Choosing the algorithm 

Target is the value to be searched. The value 0 is assigned 
to the variable low and sortedArray.length -1 is assigned to 
variable high. When the sortedArray’s first element is less 
than the Target and the last element of the sortedArray is 
greater than the Target, mid value is calculated using the 
formula mid= low + ((Target - sortedArray [low]) * (high - 
low)) / (sortedArray[high]-sortedArray[low]) and the mid
value is stored in variable pos and the repaint() function is 
called to move the Target element to the position stored in 
variable pos.

 When middle value is less than Target assign low=mid+1
and mid value is assigned to variable pos and repaint() 
function is called to move the element. When middle element 
of sortedArray is greater than Target then assign high=mid-1
and variable pos is assigned the mid value and repaint() 
function is called to move the element. When both the above 
conditions are not satisfied, variable pos is assigned the mid
value and repaint() is called to move the element and a 
variable flg is set to 1. When the flg value is 0 and 
sortedArray[low] is equal to Target the low is assigned to 
variable pos and repaint() function is called as depicted in 
Fig.8. Otherwise variable pos is assigned the value 0 and then 
repaint() function is called to swap the element. Then the 
program stops and the timer is stopped using the function 
ct.d1().

Fig. 8 Interpolated search-Element found 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

747

III. SORTING ALGORITHM 
 In sorting algorithms the user has to give how many 

number of inputs and the set of data. Then select the particular 
algorithm from the list and then the visualization of the 
selected algorithm is shown with the given inputs. 

A. Selection sort 

The algorithm works as follows: 

1. Find the minimum value in the list  

2. Swap it with the value in the first position  

3. Repeat the steps above for remaining  of the list (to 
the consecutive  positions)  

Effectively, we divide the list into two parts: the sub list of 
items already sorted, which we build up from left to right and 
is found at the beginning, and the sub list of items remaining 
to be sorted, occupying the remainder of the array. 

Algorithm Selection Sort (List, N) 

List              -the elements to be put in order 

N   -the number of elements in the list 

pos           -the position of the first element  

                     to be  exchanged 

pos1         -the position of the second element to be   

                     exchanged

t                  -temporary variable 

min             -variable to store the Minimum value 

thread_var  - variable to control the movement of the labels   

                     to be exchanged
Step1: calls ct.d() //Starts the timer 
Step2: For i=0 to N-1 do 
Step3: min =i 

Step4: For j=i+1 to N do 
Step5: if (List[j] <List [min]) then 
Step6: min=j; 
Step7: End if  
Step8: End for  
Step9: pos=i
Step10:pos1=min 
Step11: if (min! =i)
Step12: while (thread_var<3) 
Step13: Calls repaint () //It Exchanges the elements 
Step14: End While  
Step15: End If  
Step16: t =List [i] 
Step17: List [i] = List [min] 

Step18: List [min] =t 
Step19: thread_var =0 
Step20: End For  
Step21: calls ct.d1()//function that stops the timer 

The algorithm starts by selecting the selection sort option 
from the list as in Fig.9 and the timer is started using the 
function ct.d().

Fig. 9 Selection sort- Choosing the algorithm 

 From the first element to the last element, find the smallest 
element and its position is assigned to the variable min.
Variable pos is assigned the value i that represent the position 
in the array starting from 1 and variable pos1 is assigned the 
value min. Then repaint() function is called to swap the values 
in the positions given in variable pos and pos1 as illustrated in 
Fig.10. 

Fig.10 Selection sort- Performing swapping 

 The process continues until the List is sorted. The sorted 
List is shown in Fig.11 and the timer is stopped using the 
function ct.d1(). 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

748

Fig. 11 Selection sort- Sorting process completed 

B. Bubble sort 
The bubble sort algorithm makes number of passes through 

the list of elements .On each pass it compares adjacent 
element values. If they are out of order, they are swapped. We 
start each of the passes at the beginning of the list .On first 
pass, once the algorithm reaches the largest element, it will be 
swapped with all of the remaining elements, moving it to the 
end of the list. The second pass will move the second largest 
element down the list until it is in the second to last location. 
The process continues with each additional pass moving one 
more of the larger values down in the list. If on any pass there 
are no swaps, all of the elements are now in order and the 
algorithm can stop. 

Algorithm Bubble Sort (List, N) 

List              -the elements to be put in order 

N                 -the number of elements in the list 

pos               -the position of the first element  

                     to be exchanged 

pos1            -the position of the second element to be  

                     exchanged 

t                  -temporary variable 

thread_var  -Variable to control the movement of the labels 

                      to be exchanged

Step1: calls ct.d() //function to start the timer 
Step2: For i=N-1 to 0 Step -1 do 
Step3: For j=0 to i do 
Step4: if (List[j]>List [j+1] then 
Step5: pos=j     
Step6: pos1=j+1 
Step7: while (thread_var<3) 
Step8: Calls repaint () //It Exchanges the elements 
Step9: End While  

Step10: t=List[j] 
Step11: List[j] =List [j+1] 
Step12: List [j+1] =t 
Step13: thread_var=0 
Step14: End if 
Step15: End for j 
Step16: End for i 
Step17: calls ct.d1()//function that stops the timer  

 Fig.12 depicts choosing the bubble sort algorithm from the 
given list. The program starts and the timer is started using the 
function ct.d().

Fig.12 Bubble sort- Choosing the algorithm 

 The bubble sort algorithm makes N-1 number of passes 
through the List of elements where N is the number of input 
values. On each pass it compares adjacent element value. If 
they are out of order their position are stored in variables pos
and pos1 and repaint() function is called to swap the elements 
in the two positions as in Fig.13. 

Fig.13 Bubble sort- Performing swapping 

The program stops after the N-1 number of passes and the 
List is sorted as given in Fig.14. The timer is stopped using the 
function ct.d1().



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

749

Fig.14 Bubble sort- Sorting process completed 

C. Shell Sort 
Shell sort was developed by Donald L. Shell. It begins by 

dividing the full list of values as a set of interleaved sub lists. 
On the first pass, it divides the list into two sub lists. On the 
second pass, it could be further divided into sub lists. The size 
of the set to be sorted gets smaller with each pass through the 
list, until the sub list’s length become 1. As the size of the set 
decreases , the number of sets to be sorted increases. 

Algorithm Shell Sort (List, N) 

List               -the elements to be put in order 

N                  -the number of elements in the list 

pos               -the position of the first element  

                      to be exchanged 

pos1             -the position of the second element to be    

                      exchanged

h                  -variable to divide the list 

v                  -variable to store the list element, to compare 

thread_var  - variable to control the movement of the labels  
                      to be exchanged 

Step1: calls ct.d()//function that starts the timer 
Step2: h=len 
Step3: do 
Step4: h=h\2 
Step5: for i=h to n-1 do 
Step6: v=List[i] 
Step7: j=i 
Step8: while ((j>=h) && (list [j-h]>v)) do 
Step9: pos=j 
Step10:pos1=j-h 
Step11: while (thread_var<3) 
Step12: Calls repaint () //It Exchanges the elements 
Step13: End While 

Step14: List[j] =List [j-h] 
Step15: j=j-h 
Step16: End While 
Step17: List[j] =v 
Step18: thread_var=0 
Step19: End For 
Step20: End while (h>1) 
Step21: calls ct.d1()//function that stops the timer 

 The shell sort algorithm begins after choosing the shell sort 
option from the list and clicking the start button. Timer is 
started using the function ct.d(). The List is divided into two 
sub list. After dividing the List into two the first element of 
both the sub list are compared. If they are out of order their 
index value in the array is stored in variables pos and pos1
respectively and the repaint() function is called to swap the 
element as depicted in Fig.15. 

Fig.15 Shell sort- Performing swapping 

 Similarly the consecutive elements are compared. The sub 
list are further sub divided and above procedure is repeated. 
The sub lists are sub divided until the length of the sub lists 
become one. By repeating the above procedure the whole list 
is sorted. The program stops after displaying the sorted list as 
given in Fig.16. The timer is stopped by calling the function 
ct.d().

Fig.16 Shell sort- Sorting Completed 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

750

IV. RESULT ANALYSIS

A. Analysis of Searching Algorithms 

Table I depicts the comparison of searching algorithms with 
average values. In searching algorithms, number of inputs are 
8. Its average runtime is given in seconds. From analyzing 
Fig.17, we came to know that both the interpolation and 
binary search would be time consuming rather than sequential 
search. This is due to sorting the data before searching the 
elements. But basically an interpolation search will be less 
time consuming, secondly binary search will be less time 
consuming one while entering a sorted list as input to these 
algorithms. Sequential search does not need a sorted list for 
searching.

TABLE I COMPARISON OF SEARCHING ALGORITHMS-WITH 
AVERAGE VALUES 

COMPARISON OF SEARCHING 
ALGORITHMS

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8

NUMBER OF INPUTS

SE
C

O
N

D
S

SEQUENTIAL

BINARY

INTERPOLATIO
N

Fig.17 Comparison of searching algorithms-with average 
values 

B. Analysis of Sorting Algorithms 

Table II illustrates the comparison between the sorting 
algorithms with average values. sorting algorithms are 
analyzed with 8 input values. Its average runtime is given in 
seconds. From analyzing Fig. 18, we came to know that 
Selection sort is less time consuming when compared to 
Bubble and shell sort. Among the three sorting algorithms 
Bubble sort will be the most time consuming algorithm. On 
bubble sort each time adjacent elements are compared and 
swapped when needed. This process will be repeated from the 
beginning of the array until all the elements are sorted. 
Therefore Bubble sort will be the most time consuming 
algorithm. 

TABLE II COMPARISON OF SORTING ALGORITHMS-WITH 

AVERAGE VALUES 

COMPARISON OF SORTING 
ALGORITHMS

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8

NUMBER OF INPUTS

SE
C

O
N

D
S

SELECTION
BUBBLE
SHELL

Fig.18 Comparison of searching algorithms-with average 
values 

No. of 
Inputs

Sequential
Searching
in Sec.

Binary 
Searching
in Sec. 

Interpolation 
Searching in Sec. 

0 0 0 0 
1 1.3 1.3 1.3 
2 1.9 3.1 3.8 
3 2.6 7.8 7.7 
4 3.2 23.2 23.7 
5 4.3 27 28.1 
6 6.4 32.3 34.2 
7 8 51.2 55 
8 9.6 60.8 61.4 

No. of 
Inputs

Selection
Sorting in 
Sec.

Bubble
Sorting in 
Sec.

Shell
Sorting in 
Sec.

0 0 0 0 
1 0 0 0 
2 2.8 2.8 2.8 
3 5.8 6.7 6.7 
4 7.6 13.4 9.6 
5 9.6 25 13.4 
6 16.3 35.5 20.1 
7 16.8 40.3 25 
8 17.3 55.7 30.8 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

751

V. CONCLUSION AND FUTURE ENHANCEMENT
This system is implemented for visualizing some of the 

searching and sorting algorithms. This is a helpful tool for all 
kinds of learners/scholars to easily understand the implicit 
sequences of algorithm. Here the users are allowed to select 
the options, either searching or sorting. Then they are allowed 
to give input and they can select the algorithms from the list 
and the algorithm is explained visually. 

In future to enhance and continue this project, the system 
may include more algorithms for searching and sorting. 
Visualization can also be done for other kinds of algorithms. 
Voice can further be included to the system, to give more 
interaction for the end users. 

REFERENCES

[1] Baecker, R. Sorting out Sorting, Narrated colors videotape, 30 minutes, 
presented at ACM SIGGRAPH,1981. 

[2] Marc.  H.Brown and   J. Hershberger (1992) Color and sound in 
algorithm animation, IEEE Computer, 25(12) 1992,pp.:52-63.

[3] G.Rossling, M.Schuler, and B.Freisleben, The ANIMAL algorithm 
Animation Tool, Proceedings of the ItICSE 2000       conference, 2000, 
Pages 37- 40. 

[4] J.T.Stasko, TANGO, A framework and system for algorithm Animation 
computer, 23(9),1990,pp:27-39. 

[5] Jeffrey J.McConnell, Analysis of Algorithms, Narosa                   
Publications pvt.ltd, 2001. 

[6] Ellis Horowitz, Sartajsahni and Sanguthevar Rajasekaran Fundamentals 
of Computer Algorithms, Galgotia Publications,2007. 

Bremananth R received the B.Sc and M.Sc. 
degrees in Computer Science from Madurai 
kamaraj and Bharathidsan University, India in 
1991 and 1993, respectively. He has obtained 
M.Phil. degree in Computer Science & 
Engineering from Bharathiar University. He 
has received his Ph.D. degree in the 
Department of CSE, PSG College of 
Technology, India, Anna University, Chennai.  

Presently, He is a Professor Department of Computer Applications, Sri 
Ramakrishna Engineering College, Coimbatore, India. He has 16 years of 
teaching experience and published several research papers in the National and 
International Journals and Conferences. He has received M N Saha Memorial 
award for the year 2006 by IETE. His fields of research are pattern 
recognition, computer vision, image processing, biometrics, multimedia and 
soft computing. Dr. Bremananth is a member of Indian society of technical 
education, advanced computing society, ACS and IETE. 

Radhika.V has completed her B.Sc. in 
Computer Technology in Sri Ramakrishna 
Engineering College, affiliated to Anna 
University Coimbatore, Tamil Nadu, India. 
She is also a research student with  Dept. of 
Computer Applications Sri Ramakrishna 
Engineering College, affiliated to Anna 
University Coimbatore, Tamil Nadu, India. 

  Thenmozhi.S has completed her B.Sc. in 
Computer Technology in Sri Ramakrishna 
Engineering College, affiliated to Anna 
University Coimbatore, Tamil Nadu, India.  
She is placed as system associate in iGate 
Global Solutions, Banglore, India. She is 
also a research student with Dept. of 
Computer Applications Sri Ramakrishna 
Engineering College, affiliated to Anna 
University Coimbatore, Tamil Nadu, India. 


