International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:5, No:3, 2011

Visualization of Code Clone Detection Results and
the Implementation with Structured Data

Kazuaki Maeda

Abstract—This paper describes a code clone visualization method,
called FC graph, and the implementation issues. Code clone detection
tools usually show the results in a textual representation. If the
results are large, it makes a problem to software maintainers with
understanding them. One of the approaches to overcome the situation
is visualization of code clone detection results. A scatter plot is a
popular approach to the visualization. However, it represents only
one-to-one correspondence and it is difficult to find correspondence of
code clones over multiple files. FC graph represents correspondence
among files, code clones and packages in Java. All nodes in FC graph
are positioned using force-directed graph layout, which is dynami-
cally calculated to adjust the distances of nodes until stabilizing them.
We applied FC graph to some open source programs and visualized
the results. In the author’s experience, FC graph is helpful to grasp
correspondence of code clones over multiple files and also code
clones with in a file.

Keywords—code clone detection, program comprehension, soft-
ware maintenance, visualization

I. INTRODUCTION

In developing programs, “copy and paste” technique is one
of the simple methods to reuse source code. The “copy and
paste” technique in the context of program development is
called code cloning, and the copied and pasted portion of
source code is called code clone. If a portion of source code
is already tested, it contains fewer bugs than source code that
is written from scratch. This is because developers use code
cloning to reuse source code.

Many studies have been discussed code clone detection.
These studies show that a significant percentage of source code
contains code clones. One of the works shows that 19% of the
source code is cloned in the complete source code of the X
Window System [1]. Another work shows that the average
percentage of code clones is 12.7% of all subsystems [2]. In
an extreme case, the average percentage of code clones is 59%
[3].

The code clones can be troublesome during program main-
tenance. If an error to be fixed is found in the original source
code, all the code clones must be examined and most of
the code clones should be fixed. However, the presence of
code clones is usually not documented so that they must be
manually detected and then fixed.

Since 1990s, many researchers have been investigating de-
velopment of code clone detection tools [1]-[6]. Typical tools
for detecting code clones usually show the locations with the
source file names containing code clones as results. The results
are typically written in a textual representation. If source

Kazuaki Maeda is with the Department of Business Administration and
Information Science, Chubu University, Kasugai, Aichi, 487-8501 Japan
(e-mail: kaz@acm.org).

code is large and the code clones are reported in the textual
representation, it makes a problem to software maintainers
with understanding the reports. One of the approaches to
overcome the situation is visualization of code clone detection
results.

Generally, it is valuable to visualize, manipulate and re-
arrange data in an interactive graphic. The users become not
just passive observers but participants in the interaction. There
are many tools for software developers to draw diagrams.
Developers can navigate the written diagrams in the interactive
graphic and find some suggestions using scrolling, zooming in
and zooming out.

Visualization for code clone detection tools is important to
grasp the distribution of code clones and to find correspon-
dence among them. A scatter plot is a popular representation
of code clone detection results. However, it represents only
one-to-one correspondence so that it is difficult to find corre-
spondence of code clones over multiple files.

This paper describes FC (File-to-Clone correspondence)
graph. FC graph represents correspondence among files, code
clones and packages in Java. In the implementation of FC
graph, all nodes are positioned using force-directed graph
layout, which is dynamically calculated to adjust the distances
of nodes until stabilizing them. One of the implemented tools
provides an interactive graphic on web browsers (such as
Firefox [7] or Chrome [8]) to navigate code clone detection
results using scrolling, zooming in and zooming out.

Most of code clone detection tools do not open the internal
representation for the detected results. If the tools provide
visualization capability, it is tightly coupled with code clone
detection engine. Therefore, we can not use excellent visual-
ization capability with another code clone detection tool.

The author believes that code clone detection tools should
be loosely coupled the visualization capability. For this reason,
graph structured data for code clone detection results was
designed as a standard representation, and tools to visualize
the graph structured data were implemented. In the imple-
mentation, code clone detection tools write out the results,
a conversion tool reads the results and writes visualization
library specific data. This paper shows that a code clone
detection tool CPD [6] to detect code clones writes the results
in XML and FC graph is generated from the results.

Section II describes related works of code clone detection
and the visualization. Section III explains briefly about FC
graph. Section IV describes visualization tools and implemen-
tation with structured data. Section V summarizes this paper.

338

International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:5, No:3, 2011

780: {

781: private boolean select;

782

783: public next_line(boolean select)
784: |

785: this.select = select;

786: }

788: public void actionPerformed (ActionEvent evt)
789: |

790: JEditTextArea textArea = getTextArea (evt);
791: int caret = textArea.getCaretPosition();
792: int line = textArea.getCaretLine();

793

794 : if (line == textArea.getLineCount () - 1)
932:{

933: private boolean select;

934

935: public prev_line(boolean select)

936: {

937: this.select = select;

938: }

939

940: public void actionPerformed (ActionEvent evt)
941: |

942: JEditTextArea textArea = getTextArea (evt);
943: int caret = textArea.getCaretPosition();
944: int line = textArea.getCaretLine();

945

946: if(line == 0)

Fig. 1. Example of code clones extracted from jEdit Syntax Package [9]

II. RELATED WORKS OF CODE CLONE DETECTION AND
THE VISUALIZATION

A. Code Clone Detection

First of all, we clarify terms about code clones. The paper
[4] describes that

A code clone is a code portion in source files that is
identical or similar to another.

Moreover, the following terms are used in this paper:

A code clone pair is a pair of code portions that are
identical or similar to another.
A code clone set is a set of code clones paired with
each other as code clone pair.

For example, two portions which is located at lines 784-
792 and lines 936-944 in Fig.1 are textually identical, where
the source code is extracted from InputHandler.java in jEdit
Syntax Package [9]. According to the definition, the two
portions are code clones and they make a code clone pair.

Many techniques related to code clone detection, are typi-
cally categorized as follows:

o Line-based approach (e.g. [1], [3])

« Token-based approach (e.g. [4], [6])

o AST-based approach (e.g. [2])

« Dependency-based approach (e.g. [5])
One of the approaches is usually embedded in a code clone
detection tool. The core function of the detection is called a
code clone detection engine in this paper.

<duplication lines="12" tokens="46">
<file 1line="783" path="jedit/InputHandler.java"/>
<file 1ine="935" path="jedit/InputHandler. java"/>
<codefragment>
<! [CDATA[

public prev_line (boolean select)

{

this.select = select;

}

public void actionPerformed (ActionEvent evt)
{
JEditTextArea textArea = getTextArea (evt);
int caret = textArea.getCaretPosition();
int line = textArea.getCaretline();

if (line == 0)
11>
</codefragment>
</duplication>

Fig. 2. Snippet of code clone detection result written by CPD

In the line-based approach, all lines are compared one-for-
one, which provides the advantage of programming language
independence. It is important issue in real applications. How-
ever, a drawback for this approach is that it ignores lexical and
syntactic information in source code. If a developer changes
the preferences for the locations of braces and partially exe-
cutes a code formatter tool, the line-based approach fails to
detect the code clones.

In the token-based approach, entire source code is scanned,
a sequence of tokens is built, which are compared one-for-one.
One of the token-based code clone detection tools is CPD [6].
It is an open source software and we can freely use it. If
we execute CPD with a XML option to analyze the source
code shown in Fig. 1, it detects that two portions are code
clones and writes the output shown in Fig. 2. It is a snippet
of the real XML document written by CPD. It means that the
code clone is located over 12 lines of code and 46 tokens, it
begins from parenthesis “(” at line number 783 and 935 in
“jedit/InputHandler.java,” and it ends to equals “==" at line
number 794 and 946.

In the AST-based approach, syntax sensitive analysis detects
code clones precisely. Generally, a compiler constructs an AST
in the syntax analysis phase to represent syntactic information
in the source code. By modifying the compiler or building a
syntax analyzer from scratch, the AST can be derived from
the source code. We can obtain more precise results related
to code clones if the CFG and DFG analysis is applied to
detect them. However, if the approaches are applied to other
programming languages, excessive development cost will be
required.

All approaches have their advantages and disadvantages. An
aim of this research is to realize an independent visualization
of code clone detection engines. This paper is one step toward
the independence. CPD was chosen to examine it as one of
code clone detection engines.

339

International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:5, No:3, 2011

[* : \\
IS AN |
A \$\
' 5

Fig. 3. Scatter plot displayed by CCFinderX

B. Visualization of Code Clone Detection Results

A textual representation is a simple method of code clone
detection results. However, software maintainers have a prob-
lem to understand the results if the target source code to
detect code clones is large and the results are written in the
textual representation. To overcome the situation, there are
some visualizing approaches of code clone detection results
to help software maintenance.

CCFinderX [11] uses a scatter plot to show code clone de-
tection results. For example, Fig. 3 is the scatter plot displayed
by CCFinderX after detecting code clones of jEdit Syntax
Package version 2.2.2 [9]. In the scatter plot, the vertical and
horizontal axes represent location on source files. Dots mean
code clones which represent one-to-one correspondence. As a
result, the dots are plotted symmetrically against the diagonal
line.

Atomiq [12] is a commercial product and visualizes one-to-
one correspondence of code clones onto a wheel in a circular
layout. Fig. 4 shows an example of the wheel displayed
by Atomiq. A file is represented as an arc on the wheel,
and different colors distinguish between files. One-to-one
correspondence of code clones is represented as connection
using curved lines between portions through the interior of
the wheel. The clones located in a same file are represented
as an adjacent curved line so that it looks like a swelling
shown in upper area of Fig.4. The clones located in other files
represented as an arch with gradation between a file color and
another color. The circular representation realizes more easy
visualization than linear representation. We can globally grasp
correspondence of code clones using the wheel.

The representation of Atomiq is just only one-to-one cor-
respondence which is same as CCFinderX. If a portion is
cloned to more than two files, we can not grasp intuitively
correspondence among the code clones from the visualization
displayed by CCFinderX and Atomiq.

Fig. 4. Wheel displayed by Atomiq

Another approach is to visualize correspondence between
code clones using undirected graph [13]. It is called a code
clone graph in this paper. Let us use an example in Fig.5
which is extracted from the paper [13]. In the figure, we have
four files (represented as rectangles) and eight code clone sets
(represented as circles) in the files so that the code clone graph
is built as shown in Fig.6. An edge between two nodes means
the code clones are included in one file. For example, code
clone 1 and 2 are located in a same file so that node 1 and 2
are connected. In the same way, node 2 and 4 are connected.
We can get the code clone graph after repeating it to all pairs

(&)
)
(&)

Fig. 5. Eight code clone sets and four files

0 O,
9} (O,

OlOC

Fig. 6. Code clone graph in the case of Fig.5

340

International Journal of Engineering, Mathematical and Physical Sciences

ISSN:
Vol:5,

B9 43
46
\‘ w (3
- //
— B8 v
/, "‘iss
4 \ ”

oY

51 [
| Ny

{ M

5 | sintax \ 79

/ T8 /
87 | 7
ofg \
] B6
a0 54

Fig. 7. Snippet of FC graph for jEdit Syntax Package version 2.2.2

III. FC GRAPH

If we use the scatter plot as code clone detection results,
we can grasp distribution of code clones globally and find
code clone pairs in one same file or two files. However, it is
difficult to find code clone sets in multiple files. If we have a
long list of code clone pairs, the wheel displayed by Atomiq
helps users see one-to-one correspondence patterns in the easy
way. However, because of the same reason as the scatter plot,
we can not find code clone sets in multiple files. If we use
the code clone graph, we can easily view correspondence of
code clone pairs located in same files. However, we can not
find code clone sets spread over multiple files.

From the investigation into visualization of code clone
detection results, FC (File-to-Clone correspondence) graph
was designed. Fig. 7 is a snippet of FC graph to show code
clones detection results of jEdit Syntax Package version 2.2.2.
In FC graph, there are three types of nodes, a square, a circle
and a cross. A square means a file, a circle means a code clone
set and a cross means a package in Java. A sequential number
is assigned to a file and a code clone set.

In Fig. 7, there are five files of which numbers are 5, 6, 7,
8 and 9, and twenty code clone sets of which numbers are 36,
37, 43, 45, 46, 54, 57, 58, 66, 67, 68, 70, 74, 78, 79, 87, 80,
81, 88 and 89. An edge between a circle and a square means
the code clone set exists in the file. For example, in the left
side, there is an edge between a circle with number 58 and
a square with number 8. It means that the code clone set 58
exists in the file 8 so that more than one code portion located
in the file 8 are identical or similar to another. Moreover, there
are edges among a square with number 9, a circle with number
78 and another square with number 6. It means that the code
clone set 78 exists in the file 9 and the file 6 so that one code
portion in a file is cloned to another file.

Coordinates of nodes in FC graph are decided using force-

2517-9934
No:3, 2011

directed graph layout [14]. In the force-directed graph layout,
edges of the graph have spring-like forces, and calculation to
adjust lengths of edges keeps going until stabilizing distances
of nodes. There are invisible edges between crosses, and
visible edges between a cross and a square. Correspondence
between packages is not important for code clone detection. To
position closely files belonged in a same package, crosses are
plotted in FC graph but edges between crosses are invisible.

IV. IMPLEMENTATION ISSUES OF FC GRAPH
A. Visualization Tools

There are many commercial visualization tools and open
source visualization tools. Generally, the visualization tools are
divided into two groups. One type of the group is a standalone
tool, the other is a library-based tool.

If we use the standalone visualization tool, we can execute
the tool without extensions or plug-ins, and do some works like
text editors. It reads a data file written in a textual or binary
format, visualizes it, and analyzes it in some techniques.

Gephi is an excellent standalone visualization tool [15],
[16]. It is an open source software and it has been developed to
analyze social networks and semantic Web. Gephi is based on
NetBeans platform so that we can extend the capability using
plug-in APIs. Cytoscape is another standalone visualization
tool [17]. It has been developed to visualize molecular inter-
action networks and other data, but we can use it to visualize
and analyze other networks than the molecular networks.

These tools are very powerful, but we decided not to use
the standalone tools. We need to embed visualization function
and control it in our implementation so that we decided to
choose library-based tools.

One of the library-based tools is Protovis [18], [19]. It is
a JavaScript library to make interactive visualization more
accessible to web. Protovis realizes platform independence. If
we have any web browsers containing a JavaScript processor,
visualization flies over the Internet and we can see it on
the web browsers. Our implemented tools have an option to
generate a HTML file and graph data to display FC graph by
Protovis. Fig. 7 is a snippet of a real output' on Firefox web
browser after detecting code clones of jEdit Syntax Package
version 2.2.2.

JUNG [20] and prefuse [21], [22] are Java libraries which
are helpful to build Java Swing based visualization applica-
tions. The implementation work for FC graph is now going to
support JUNG and prefuse.

B. Representation of Graph Structured Data in RugsOn

To build FC graph, CPD2RugsOn and RugsOn2Vis were
implemented. Fig. 8 shows procedures to build FC graph from
source code in Java. CPD is a code clone detection tool which
writes out code clone detection results in XML. CPD2RugsOn
reads the results in XML, and analyzes correspondence among
files, code clones and packages in Java. After that it writes
graph structured data in RugsOn [10], which was proposed by

I'The real output is open at http://www.bais.chubu.ac.jp/kaz/clones/

341

International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:5, No:3, 2011

cloneGraph {
< D nodes {
Source node {
Code in ; "syntax" .nodeName
Java = 1 .kind
[\ 1 .size
".id_0O" .uuid
}
CPD CPD2RugsOn || RugsOn2Vis node {
"Jedit" .nodeName
1 .kind
I ‘ L™ 1 .size
— ey ":id_1" .uuid
e A P L u -
Clones Structured = LI }
Report in Data in g NS node { e
r .n il
XML RugsOn . 10 gkind caefame
~— 1 T
.slze
":id_3" .uuid
}
Fig. 8. Procedures to build FC graph from source code in Java node {
"." .nodeName
1 .kind
. 1 .si
the author. RugsOn2Vis reads the graph structured data, and ", idjfe uuid
writes FC graph data in some data formats. }
RugsOn is used to represent graph structured data. The “Od‘; { den
. . . "8" .nodeName
representation in RugsOn is composed of several elements. 1 .kind
Each element has a value and a name. For example, 1 .size
"syntax" .nodeName) ":1d.5" .uuid
which represents the value as “syntax” and the name of node {
the element as nodeName. The element is not only a data "58" .nodeName
representation, but also it is an executable method invocation i -kind
. . . .slze
without parentheses in programming languages (e.g. Ruby). n.id 58" .uuid
The method name is name and the receiver of the method is }
“syntax.” b
. . links {
In RugsOn, a structure is represented using a block as an link {
argument. For example, Fig. 9 shows that node has four child ":id_0" .source
elements: nodeName, kind, size and uuid. In the case of the iudf "d -target
. .K1n
first node element, nodeName element’s value is “syntax,” the }
kind element’s value is 1, the size element’s value is 1, and link {
uuid element’s value is “:id_0. ":id 1" .source
. ":id_0" .target
An element to represent a collection can have more than 1 kind
one element with the same name. In Fig. 9, the nodes element }
has six child elements with the name node. The first node link {

. « ’ ":1id_8" .source
element has a nodeName element with a value “syntax,” the "iid_1" .target
second node element has a nodeName element with a value 2 .kind
“jedit,” the third node element has a nodeName element with i o

. in
a value “org.” This represents a sequence of node elements. n.id 58" .source
If we need to represent an element linked to another element ":id_8" .target
across the structure, a unique identifier, called uuid, is given) 3 .kind
to the element, and another element refers to the element }
using the identifier. Fig. 9 shows that a wuid element with }
the identifier “:id_0" is given to the first node element, and

«

another uuid element with the identifier “:1d_3" is given
to the third node element. The source element in the first
link element has a reference to the identifier “:id_0,” and
the rarget element in the first /ink element has a reference
to another identifier “:1d_3.” The representation shows links
across the structure so that RugsOn supports graph structured
data. When a program writes graph structured data to a file and
another program reads the data from the file, it reconstructs
the graph structured data. RugsOn specific APIs are prepared
so that the value of the uuid element can be freely modified.

Fig. 9. Graph structured data for FC graph in RugsOn

RugsOn plays an important role of intermediate represen-
tation to realize visualization tool independence. In current
implementation, RugsOn2Vis has only one option to generate
FC graph data for Protovis. Other options will be implemented
to generate the graph data for JUNG and prefuse.

342

International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:5, No:3, 2011

V. CONCLUSION

This paper describes a code clone visualization method,
FC graph, and the implementation issues. There are many
approaches to visualization of code clone detection results
such as a scatter plot and a wheel. However, it represents
only one-to-one correspondence and it is difficult to find
relationships of code clones over multiple files. FC graph
represents correspondence among files, code clones and pack-
ages in Java. In current implementation, nodes in FC graph
are positioned using force-directed graph layout, which is
dynamically calculated to adjust the distances of nodes until
stabilizing them. In the author’s experience, FC graph is
helpful to grasp correspondence of code clones over multiple
files.

Graph structured data for code clone detection results was
designed for loosely coupling with code clone detection en-
gines and the visualization capability. In this paper, an open
source software CPD was chosen to detect code clones. CPD
writes the results in XML and FC graph is generated from
the results. During generating procedures, RugsOn plays an
important role of intermediate representation. Current imple-
mentation provides only one option to generate FC graph data
for Protovis. Research and development about visualizing code
clone detection results will continue to generate FC graph data
for other libraries and to support other visualization methods.
The results will be published in a future paper.

ACKNOWLEDGMENT

The author would like to thank Mio Andoh and Michio
Takahashi for discussing FC graph and the implementation.

REFERENCES

[1] Brenda .S. Baker, “On Finding Duplication and Near-Duplication in Large
Software Systems,” Working Conference on Reverse Engineering, pp.86—
95, 1995.

[2] IraD. Baxter, Andrew Yahin, et al., “Clone Detection Using Abstract Syn-
tax Trees,” International Conference on Software Maintenance, pp.368-
377, 1998.

[3] Stéphane Ducasse, Matthias Rieger, and Serge Demeyer, “A Language
Independent Approach for Detecting Duplicated Code,” 15th IEEE Inter-
national Conference on Software Maintenance, pp.109-118, 1999.

[4] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue, “CCFinder: A
Multilinguistic Token-Based Code Clone Detection System for Large
Scale Source Code,” IEEE Transactions on Software Engineering, vol.28,
no.7, pp.654-670, 2002.

[5] Jens Krinke, “Identifying Similar Code with Program Dependence
Graphs,” Working Conference on Reverse Engineering, pp.301-309,
2001.

[6] PMD: Finding copied and pasted code,
available from http://pmd.sourceforge.net/cpd.html.

[7]1 Mozilla — Firefox web browser & Thunderbird email client,
available from http://www.firefox.com/.

[8] Google Chrome - Get a fast new browser. For PC, Mac, and Linux,
available from http://www.google.com/chrome/.

[9] jEdit Syntax Package - Open Source syntax highlighting JavaBean,
available from http://syntax.jedit.org/.

[10] Kazuaki Maeda, “Executable Representation for Structured Data Using
Ruby and Scala,” 10th International Symposium on Communications and
Information Technologies, pp.127-132, 2010.

[11] CCFinder Official Site,
available from http://www.ccfinder.net/ccfinderx.html.

[12] Atomiq : Code Similarity Finder,
available from http://www.getatomiq.com/.

[13] Yoshihiko Fukushima, Raula Kula, Shinji Kawaguchi, et al., “Code
Clone Graph Metrics for Detecting Diffused Code Clones,” 16th Asia-
Pacific Software Engineering Conference, pp.373-380, 2009.

[14] Andreas Noack, “Energy Models for Graph Clustering,” Journal of
Graph Algorithms and Applications, vol.11, no.2, pp.453-480, 2007.
[15] Gephi, an open source graph visualization and manipulation software,

available from http://gephi.org/.

[16] Mathieu Bastian, Sebastien Heymann and Mathieu Jacomy, “Gephi:
An Open Source Software for Exploring and Manipulating Networks,”
International AAAI Conference on Weblogs and Social Media, pp.361—
362, 2009.

[17] Cytocape: An Open Source Platform for Complex-Network Analysis
and Visualization, available from http://www.cytoscape.org/.

[18] Protovis, available from http://vis.stanford.edu/protovis/.

[19] Michael Bostock and Jeffrey Heer, “Protovis: A Graphical Toolkit
for Visualization,” IEEE Transactions on Visualization and Computer
Graphics, vol.15, no.6, pp.1121-1128, 2009.

[20] JUNG - Java Universal Network/Graph Framework,
available from http://jung.sourceforge.net/.

[21] prefuse — interactive information visualization toolkit,
available from http://prefuse.org/.

[22] Jeffrey Heer, Stuart K. Card and James A. Landay, “prefuse: a toolkit
for interactive information visualization,” The SIGCHI Conference on
Human Factors in Computing Systems, pp.421-430, 2005.

Kazuaki Maeda He is a professor of Department of
Business Administration and Information Science at
Chubu University in Japan. He is a member of ACM,
IEEE, IPSJ and IEICE. His research interests are
Compiler Construction, Domain Specific Languages,
Object-Oriented Programming, Software Engineer-
ing and Open Source Software.

343

