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Visual Search Based Indoor Localization in Low
Light via RGB-D Camera
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Abstract—Most of traditional visual indoor navigation algorithms
and methods only consider the localization in ordinary daytime, while
we focus on the indoor re-localization in low light in the paper. As
RGB images are degraded in low light, less discriminative infrared
and depth image pairs are taken, as the input, by RGB-D cameras, the
most similar candidates, as the output, are searched from databases
which is built in the bag-of-word framework. Epipolar constraints can
be used to relocalize the query infrared and depth image sequence.
We evaluate our method in two datasets captured by Kinect2. The
results demonstrate very promising re-localization results for indoor
navigation system in low light environments.

Keywords—Indoor navigation, low light, RGB-D camera, vision
based.

I. INTRODUCTION

V ISUAL place recognition either indoor or outdoor is

a challenging problem, which is crucial to navigation

systems. For a service mobile platform at home, navigation

in low light is a very attractive characteristics, for example,

calling a domestic robotics to take water for drink during night,

or for help when an emergency occurs in the dark. Most of

existing approaches for localization or place recognition relies

on visual information, and the core technique – visual search

technique includes images representation, image matching,

and so on. They are widely used to detect loop closure in visual

simultaneous localization and mapping systems (vSLAM) and

re-localization in navigation system.

As all we know, camera motions and 3D structures are

encoded in 2D image sequences, so RGB frames can provide

rotation and translation for each position, and the rotations

and translations are used to generate 3D map by applying to

depth images. However, RGB frames are only captured well in

visible light. In low light environments, localization methods

of moving platforms from RGB images will fail, since the low

quality images are captured from RGB cameras. Fortunately,

most of RGB-D cameras (e.g. Kinect2, Xtion) are equipped

with infrared sensors. The infrared images can be recorded

in low light environments when RGB sensors does not work

well. Infrared images can also be visible, however, the infrared

images are quite noisy, and features are extracted at low

quality, and are less distinctive compared with features from

RGB frames, which degenerates the result of re-localization.

And on the other hand, the depth images provide the geometry
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description in space but limited description to objects, which

can be used to improve the mapping. Fig. 1 shows an example

captured from RGB-D camera.

In our method, we take the infrared images and depth image

pair as a query, and search the most similar images in the

existing datasets to cope with indoor localization problem in

low light environments. Our contribution are: 1) we try to

solve the localization problem for moving platforms in low

light environments; 2) we fuse the 2D infrared features and

3D depth features in the DBoW framework to improve the

matching result.

II. RELATED WORK

As the most important part of vSLAM, vision-based place

recognition has been attractive to a number of researchers.

Indoor localization actually is a typical place recognition in a

small range of ways. A good survey of visual place recognition

please refers to [1], [2]. In the survey, visual place recognition

is considered from place description, mapping or retrieval,

and recognition in a vast range of outdoor scenarios. Most of

vSLAM systems only take 2D images as input, since 2.5D

structure captured from depth sensors is hard to obtain at

low-cost in outdoor environments. However, it is appropriated

to take RGB-D cameras for indoor environment [3]. Generally,

the valid distance of RGB-D sensors is between 0.8m and

4.0m, which is enough to indoor SLAM systems. Mur-Artal

et al. created a ORB-SLAM system, and ORB features

are used for all tasks like tracking, mapping, re-localization

and loop closing, which achieved unprecedented performance

with respect to state-of-the-art monocular SLAM systems [4].

Endres et al. presented an SLAM approach for RGB-D camera

first, and was used to estimate the trajectory of a hand-held

RGB-D sensors, which can generate a dense 3D map [5],

and three types of features including SIFT, SURF, ORB were

compared from translation and rotation in the evaluation.

Engel et al. of TUM (Technical University Munich) proposed

a monocular SLAM algorithm for large-scale, consistent maps

of the environment [6]. Unlike most current real-time SLAM

systems operating at low-level features like points, lines , or

patches, Salas-Moreno et al. presented a ‘object oriented’ 3D

SLAM paradigm, called SLAM++, which considered the prior

knowledge that many scenes consisted of repeated structures

and objects [7]. Loop closure detection is a critical procedure

to obtain optimized camera trajectories and maps in SLAM

systems. In [8], [9], an online loop closure detection method

was proposed for large-scale and long-term operation, and

a real-time solution was considered for the loop closure
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a) RGB image                                          b) Depth image                                c) Infrared image
Fig. 1 Example images from the RGB-D camera

detection based on a memory management [10], which kept

computation time under a fixed limit.

III. METHOD FOR INDOOR NAVIGATION IN LOW LIGHT

A. The Framework of Our System

Fig. 2 shows the framework of our system. First we

pre-process both infrared image and depth image, the

processed image pair is taken as the query image pair. Then

infrared features and 3D features are extracted, and searched

in a hierarchical bag-of-words tree. The output is the most

similar image pair in the database. And epipolar geometry

can be performed between the processed query image pair

and matching image pair to localize where the query image

pair are captured in the map.

B. Image Preprocessing

We observe that infrared images are only visible signals in

low light from RGBD camera, however, the infrared images

are very dark and low quality. And we apply feature matching

methods to the raw images, they do not work well. So we

consider to enhance infrared images by image processing

tools. First, we perform median filtering on infrared images

by using 3 × 3 mask to denoise. And from the histogram

of infrared images, most of the pixel intensity lie between

0 and 30, and few pixels have high intensity. As all we know,

histogram equalization is an algorithm to enhance images by

nonlinear stretching the original intensity. In our method we

take histogram equalization to transform the denoised infrared

images. Fig. 5 demonstrates the comparison of before and after

image preprocessing. The enhanced infrared images are used

to the following steps in our method.

C. Image Representation with Infrared Feature Fused 3D
Depth Feature

For each camera position, three signals (including RGB,

infrared and depth frame) are captured by Kinect2. Compared

with RGB images, infrared images are degenerated. 3D depth

feature is not distinctive as intensity features of RGB frames,

but features from depth images and features from infrared

images can work together to represent one position point.

We extract 1000 ORB features from each enhanced infrared

image. ORB feature is proposed by Rublee et al. [11], which is

binary descriptor based on BRIEF(Binary Robust Independent

Elementary Features). The most important characteristic of

ORB feature is at two orders of magnitude faster than SIFT,

which can be implemented in real-time. A ORB feature is

denoted by a 32 byte vector with 32 dims. We extract Intrinsic

Shape Signatures (ISS) from each depth image [12], and use

FPFH (Fast Point Feature Histogram) to describe 3D features

as a vector with 33 dims.

D. Image Vocabulary and Database Generation

After we have a bunch of ORB features and depth FPFH

features to represent each position from the above subsection,

we quantize ORB features and ISS+FPFH depth features from

infrared image and depth image into a sparse numerical vector

in the framework of hierarchical bag of words [13]. We fill

one zero to all 32 dims ORB features, so it can work together

with 33 dims depth features to generate databases. The visual

vocabulary is created offline from the training sequence by

performing K-means clustering. And a hierarchical tree is

built, and whose leaves are represented vocabularies in the

dataset corresponding to ORB features and FPFH features. The

inverse index file contains the weighted assigned for each word

in the images in which they appear according to its relevance

in the training set. The inverse index is easy to update when

new images need to add to the dataset, and is widely used

in the framework for image fast searching. Further, a direct

index is used to store the features of each image, and it can

be updated when a new image is added into the database. We

use the DBoW2 [13] to implement and generate the image

database, which is public C++ library.

E. Image Matching

Image matching is the key step to vision-based loop

detection and re-localization. Given a query image pair, we

need a fast matching int the database. First, we have to

convert the infrared and depth image pair into a vector by

the vocabulary words from the bag-of-words algorithm. We

take the following formula to measure the similarity of two

vector as the same in [13],

s(v1,v2) = 1− 1

2
| v1

|v1| −
v2

|v2| | (1)

And the similarity score is normalized, we use the same

normalization as in [13], the normalized score is defined as

β(vtn ,vtj) =
s(vtn ,vtj)

s(vtn ,vtn−1)
(2)
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Fig. 2 The framework of our system

Fig. 3 Ten consecutive frames of infrared and depth images for the office dataset

Fig. 4 Ten consecutive frames of infrared and depth images for the apartment dataset

a) The raw infrared image                            b) Infrared image after image preprocessing

Fig. 5 Comparison of before and after image preprocessing

If the normalized score is greater than a threshold β, then

matching is accepted, otherwise it is rejected.

IV. EXPERIMENTAL RESULTS

In our experiments, we collect two databases — office and

apartment in daytime by hand held microsoft Kinect2. In

daytime environment, Kinect2 captures three types of images

— RGB, depth, and infrared images. The RGB and depth

images are used to reconstruct 3D maps to better demonstrate.

We reconstruct our database in the hierarchical bag-of-words

framework by features from the depth and infrared images.

Then we capture the query sequences in low light, which RGB

sensor of Kinect2 fails to record any useful information. Each

frame of the sequences in low light is taken as the input image
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Fig. 6 A wrong match example

Fig. 7 Re-localization in the office dataset. Green points are the correct
re-localization, while red points are the incorrect matching

pair, and is searched and matched in the databases by our

proposed method. For the office database, we totally have 1340

original infrared images and depth images in the database, see

Fig. 3, and generate 80679 words in the vocabulary from 2D

ORB and 3D FHPH features. For the apartment sequence,

we record 1045 original infrared images and depth images

in the database, see Fig. 4, and generate 86283 words in the

vocabulary. Figs. 7 and 8 show the re-localization results in

the office and apartment datasets, respectively. The path in

3D map is the re-localization result, the green points are the

correct re-localization, while the red points are the incorrect

matching. We only have 6 wrong match frames for the office

sequence, and 3 wrong match frames for apartment sequence

(corresponding to the red points on the pathes). The wrong

matches are mainly coming from the similar features, like the

tables in the office are all the same. And other reason is from

the narrow view field with confused corners, see Fig. 6.

V. CONCLUSION

Vision based indoor localization is a challenging problem

due to variant indoor environments and the changing lighting,

especially there is few light source during night. Many Chinese

house owns the contemporary and contracted style with less

decoration, which will cause vision-base methods failed easily.

So different sensors will be considered in our future work

to compensate for the vision based method. On the other

hand, since indoor environments are well structural with lines

features, especially in the corridor and so on. How to use the

structural features for localization is our future work.

Fig. 8 Re-localization in the apartment dataset. Green points are the correct
re-localization, while red points are the incorrect matching
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