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Abstract—We propose to record Activities of Daily Living 

(ADLs) of elderly people using a vision-based system so as to provide 
better assistive and personalization technologies. Current ADL-related 
research is based on data collected with help from non-elderly subjects 
in laboratory environments and the activities performed are pre-
determined for the sole purpose of data collection.  To obtain more 
realistic datasets for the application, we recorded ADLs for the elderly 
with data collected from real-world environment involving real elderly 
subjects. Motivated by the need to collect data for more effective 
research related to elderly care, we chose to collect data in the room of 
an elderly person. Specifically, we installed Kinect, a vision-based 
sensor on the ceiling, to capture the activities that the elderly subject 
performs in the morning every day. Based on the data, we identified 
12 morning activities that the elderly person performs daily. To 
recognize these activities, we created a HARELCARE framework to 
investigate into the effectiveness of existing Human Activity 
Recognition (HAR) algorithms and propose the use of a transfer 
learning algorithm for HAR. We compared the performance, in terms 
of accuracy, and training progress. Although the collected dataset is 
relatively small, the proposed algorithm has a good potential to be 
applied to all daily routine activities for healthcare purposes such as 
evidence-based diagnosis and treatment. 
 

Keywords—Daily activity recognition, healthcare, IoT sensors, 
transfer learning. 

I. INTRODUCTION 
S the world population is aging, how we can provide the 
elderlies with the care and support that they need to live 

independently becomes increasingly important. The proportion 
of elderly people with age of 65 or over is projected to reach 1 
billion by 2030, 1.5 billion by 2050 and 2.9 billion by 2100. In 
1990, 54 million of the elderly population were aged 80 or over. 
This number nearly tripled to 143 million in 2019. Globally, the 
number of people over 80 years of age is projected to nearly 
triple again to 426 million by 2050 and this number is projected 
to be 881 million by 2100 [1]. In other words, the number of 
people over 80 years of age is predicted to grow much faster 
than those above 65. The risk of elderly people suffering from 
various Noncommunicable Diseases (NCDs) will be much 
higher than those that are younger. In fact, NCDs are 
collectively responsible for almost 70% of all deaths worldwide 
[2]. In addition to all these diseases, it is reported [2] that 
Alzheimer’s diseases or other degenerative brain diseases 
among elderly people have been increasing more significantly 
when compared with other NCDs. Amidst such diseases, it is 
important that the elderly can maintain the ability to live 
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independently. To alleviate the healthcare burden, it is 
important to ensure the physical and mental well-being of the 
elderly people are looked after. To do so, clinicians utilize 
various metrics observed from basic ADLs of the elderly as an 
important indicator of the level of autonomy they enjoy [3]. For 
example, if the level of ADLs is considered sufficient, it can 
indicate the slowing down of mental illness. If level of ADLs is 
considered insufficient, this could suggest that elderly people 
increase physical activity as an effective strategy to maintain 
independence [4]. If information about activities in the daily 
routine could be automatically collected, it could serve as 
crucial reference for the prevention of NCDs and for 
prescription of behavioral therapies. 

Research in the past mainly focused on developing solutions 
to determine abnormality in some specific activities such as 
walking imbalance [5], falling [6], sitting down and standing up 
[7], etc. There has been some effort to investigate into the 
automatic recognition of ADLs such as cooking [8], bathing [9], 
medication intake [10], etc. However, since the development of 
some physical and cognitive disfunctions usually takes years to 
become noticeable, it could be too late by the time they are 
discovered for any effective actions to be taken.  In other words, 
abnormal activities like falling, and walking balance problems 
should be prevented instead of being detected. When symptoms 
of NCDs become noticeable at their late stages, such 
abnormality detection methods could be useful for diagnosis 
through analyzing some specific activities that provide 
abnormality information. However, they might not be sufficient 
for elderly patients’ lifestyle management which is essential for 
maintaining their independence for taking effective behavioral 
therapies and other treatments that could prevent the 
development of various NCDs. 

Given that the recognition of ADLs could facilitate NCDs 
early and this could mean facilitating the independent living of 
the elderly so that their health and rehabilitation process can be 
monitored, and possible diseases detected early [11], we 
develop tools to automatically collect ADLs data and detect 
various activities all through the day. If they can be accurately 
detected, the daily routines could be much more easily detected 
and monitored to keep track of health conditions. Based on the 
data collected, even minor changes in ADLs can be detected 
and analyzed so as to ensure that elderlies can live a healthy 
lifestyle and to discover hidden diseases or physical 
dysfunctions. We propose a solution here that can be deployed 
in a smart home that integrates healthcare features like health 
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monitoring, daily reminding, and disease prevention [12]. 
Existing technologies that enable home automation have 

received much attention recently as they can improve comfort 
for seniors when they live at home [13]. However, current smart 
homes lack activity recognition features and this could hinder 
the health monitoring. To overcome the problem, we therefore 
propose IoT sensor based HAR as the essential module for 
future smart home. This idea is captured in Fig. 1 which 
illustrates a general procedure that enables a home environment 
to have healthcare features. The proposed smart home 
environment is equipped with IoT sensors for data collection so 
as to facilitate HAR data. Such data can be post-processed to 
obtain useful information including semantic meaning and 
interpretation for healthcare. 

 

 

Fig. 1 Procedure of using IoT sensor based HAR to enable smart 
home environment with healthcare ability 

 
Sensor based HAR has received much recent attention. 

However, there has not been much investigation regarding 
whether or not existing HAR methods could be applied to real- 
world environments in healthcare. Motivated by developing 
ADLs logging tool for elderly healthcare, we present here 
results of our effort to investigate feasible sensor deployment in 
the home environment and conduct a field study with an elderly 
person using video and infrared sensor as provided by Kinect 
v2. A real-world data set was collected on the daily routines 
performed by the elderly person and the dataset contained 12 
regular ADLs in the morning. Based on our investigation, we 
developed an effective HAR algorithm by using transfer 
learning. In this paper, we also propose a framework that 
includes various HAR methods for implementation in an 
ambient elderly care environment. We conducted several 
experiments by following the HAR framework and achieved 
high activity recognition accuracy. We believe that the 
proposed method has good potential as it is simple yet effective 

in dealing with ADLs in ad-hoc healthcare environments that 
require monitoring physical independence ability parameters 
for evidence-based diagnosis and treatment.  

II. RELATED WORK 
The body of literature related to the recognition of ADLs for 

healthcare is rare. We roughly classify related jobs according to 
the HAR sensors that are taken to tackle the problem. HAR 
methods can be classified according to the sensors and their 
arrangements. In this section, we review the type of IoT sensors 
and discuss how they are related to HAR approaches that are 
taken. We also consider the arrangement of the sensors and how 
they be utilized for the ADLs’ recognition. 

A. HAR Sensors 
The HAR approaches taken to tackle the ADLs recognition 

problem can be depending on the types of sensors used. In [14], 
these sensors are classified roughly into two categories as 
ambient sensors and wearable sensors. Ambient sensors refer to 
sensors connected as a wireless mesh or dense network that 
monitors the whole indoor environment including human 
subjects. Wearable sensors refer to sensors that are attached to 
clothing or on the body, or even implanted under the skin. In 
[15], sensors are classified into three categories: vision, ambient 
and wearable. Following this categorization, we classify HAR 
literatures into three categories of methods [16]-[19]: vision-
based, ambient sensor-based and wearable sensor-based 
methods. The vision-based approaches are the mainstream. 
Vision-based solutions usually make use of different vision 
features like silhouette, RGB, depth, and skeleton etc. for HAR. 
Ambient sensor-based approaches could have various ambient 
sensors like RFID tags, state change sensors and even Wi-Fi 
based sensors to choose from. As for the third category of 
approaches, they cover inertial sensors like accelerometer and 
gyroscope. Some recent works [22, 23] make use of different 
sensor modalities and develop sensor fusion methods to 
examine their mutual supplemental advantages so as to gather 
the most information for the most accurate HAR.  

B. Sensor Arrangements 
Recent work in the development of HAR methods depends 

on the arrangement of different sensors. For ambient sensors, 
some RFID technologies, such as that reported in [20], require 
that RFID tags are installed on the entire floor of a user’s living 
environment for the purpose of detecting whether or not a 
person is near the bed. They also require that RFID antenna are 
embedded in the bed cloth. The main disadvantage is that, due 
to the interference of RFID signals when two objects are close 
together, detection accuracy will be low due to the high noise 
level. Another type of ambient sensor is state-change sensors 
that require to be installed in all locations for deployment. 
However, despite the wide adoption of state-change sensors, 
this approach could only do some coarse-grained HAR. In 
wireless communications, the channel state information (CSI) 
is known as channel properties of a communication link. Wi-Fi 
CSI is a useful approach that can be adopted for HAR to reduce 
the requirement for the number of sensors [21]. It also has the
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TABLE I  
DIFFERENT SENSOR ARRANGEMENTS USED IN EXISTING PUBLIC HAR DATASETS 

Dataset Year Sensor Sensor Type NS NA Activity 
MSRDailyActivity3D [26] 2012 Kinect v1 Vision 10 16 Actions 

PKU-MMD [27] 2017 Kinect v2 Vision 66 51 Actions 
NTU RGB+ D 120 [28]  2019 Kinect v2 Vision 32 120 Actions 
Kasteren Dataset [29] 2008 State change Ambient 1 8 Daily activity 
Freiburg Dataset [30] 2014 Audio Ambient -- 22 Daily activity 

Smart Carpet Dataset [20] 2016 RFID Ambient 13 2 Fall detection 
WiAR Dataset [31] 2018 Wi-Fi Ambient 10 16 Gestures, activities 

PAMAP2 [32] 2012 3 3-DOF IMUs Wearable 9 18 Daily activities 
Opportunity dataset [22] 2011 IMUs, 72 sensors of 10 modalities Mixed 12 21 Morning activities 
Berkeley MHAD [23] 2013 Mocap, Kinect v1, camera, acc, audio Mixed 12 11 Actions 

advantage of cross wall sensing ability, but this approach lacks 
theoretical foundation that elaborates its accuracy and 
capability for multi-user activity recognition. Wi-Fi CSI based 
HAR requires strict sensor positioning, rendering it hard to 
install and adapt to environmental changes. Wi-Fi CSI is only 
used at its early research stage and it lacks comparison with 
other sensors in terms of its measurement accuracy. 

Wearable devices could be an appropriate choice for activity 
recognition. Given that each sensor modality has its own 
limitations, there has been some effort to fuse vision and inertial 
sensor data to improve the HAR accuracy [22, 23]. In [24], a 
review of previous works that use both depth cameras and 
inertial sensors to collect multimodal data has been presented. 
It provides a summary of the similarities in the features that are 
utilized for such fusion approaches. However, the inertial 
modality does not provide any contextual information for fine-
grained (e.g. human-object interaction) HAR tasks. Besides, 
due to its intrinsic battery limitation, this approach is considered 
too intrusive as batteries need to be replaced to allow devices 
being worn for long-term monitoring.  

It is still unclear whether or not adding extra modalities can 
improve the accuracy of multimodal HAR methods. Based on 
the Opportunity dataset, the multimodal fusion analysis of [25] 
reveals that the more data channels there are for its proposed 
Deep Learning (DL) model named DeepConvLSTM, the better 
HAR performance can be. For example, starting from a  score 
of 69% that is given by using only the accelerometer data 
modality of the Opportunity dataset, the average performance 
improves 15% by fusing accelerometers and gyroscopes and 
20% when fuses accelerometers, gyroscopes and magnetic 
channels. However, the use of different data modality 
combinations in experiments based on Berkeley Multimodal 
Human Activity Database (MHAD), the improvement on the 
performance is very limited when adding more data modalities 
(from around 98% to 100%) [23]. It also concludes that adding 
extra modality may even lower the HAR accuracy, which 
renders the extra modality misleading for the recognition 
process. Besides, the increased problem complexity and 
difficulties for deployment make multimodal HAR hard to be 
popularized among end users and other stakeholders. 

To compare the capability of different sensors, we collected 
some representative public datasets that use various sensor 
arrangements as listed in Table I. It is noteworthy that the NTU 
RGB+D 120 [28] includes relatively more complex activities 

comparing with the other datasets. This dataset is collected 
based on vision sensors. Based on the analysis of existing 
sensor arrangements in Table I, it appears that vision sensors 
are relatively more reliable for HAR among all other sensors 
that have been adopted when it comes to the number of subjects 
(NS) involved in their datasets, and the number of activity 
classes (NA) that they try to recognize. However, with the 
ambition to simultaneously recognize activities with different 
activity complexities like activity resolution, high- and low-
level activities, and human-object interactions, a dataset, NTU 
RGB+D 120 [28], containing a larger number of activities has 
been made available for testing. So far, this goal has not been 
achieved well as performance with the dataset suffers from 
relatively low accuracy. The most accurate recognition rate 
achieved is around 65% [28]. Also, if ADLs recognition for 
NCDs are to be tackled, the NTU RGB+D 120 does not need to 
be used in all when developing models for the task. Some fine-
grained activities in the dataset like “make ok sign”, “counting 
money” and activities labelled as “grab other person’s stuff”, 
“put on bag/backpack”, and “put on jacket” might be irrelevant 
to ADLs or for inferring symptoms of NCDs. Besides, with the 
increasing deployment complexity, large datasets might be 
unfeasible when developing models for real-world healthcare 
applications. 

III. COLLECTING AN ADLS DATASET FOR RESEARCH IN 
ELDERLY CARE 

In this section, we introduce the data collection method of 
our ADLs dataset and its data structure. In [33], a range of 
ADLs are defined so that ADLs can be divided into domestic 
activities, or Instrumental ADLs (IADLs), and personal selfcare 
activities, or Basic ADLs (BADLs). IADLs are activities that 
are not essential but are needed for an individual to be able to 
live independently in a community. They include, for example, 
preparing food, housekeeping, shopping, managing money, 
taking medication, using telephone and transportation. BADLs 
refer to selfcare activities, such as eating, drinking, dressing, 
walking, bathing, and using toilet. Collecting these ADLs is the 
goal of life-logging systems like the one developed by Ahmad 
et al. [34], which uses depth video sensor to detect activities like 
cooking, watching TV, exercise, hand clapping, walking and 
cleaning. However, most life-logging systems, such as that 
described in [34], does not consider these characteristics of 
ADLs. Instead, only data related to some coarse-grained 
activities are collected. In this paper, we presented how we 
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collected a set of ADLs of an elderly to study and recognize her 
morning routines like “lie down”, “get up”, “comb hair”, 
“sweep the floor”, etc. that are essential for inferring health 
related information like healthy lifestyle, hygiene, sleeping 
hour, physical efficiency, etc. 

A. Sensor Selection 
To decide what sensors to best collect data for ADLs 

recognition, we have investigated into the relative advantages 
and disadvantages of each sensor category. As shown in Table 
II, we considered installation complexity, intrusiveness, and 
battery life and concluded that ambient and wearable sensors 
have relatively more disadvantages and may not be the most 
suitable for home based daily routine recognition. Having 
considered all these different sensors, we decided to go with 
vision-based sensors. Of different vision-based sensors, we 
decided to use Kinect. Specifically, we have chosen the Kinect 
v2 sensor. The valid working distance range of Kinect v2 sensor 
is 0.5 to 4.5 meters, which is long enough to cover the whole 
room environment of an elderly person. Unlike other RGB 
vision sensors, the Kinect v2 sensor will not be affected by poor 
illumination condition at night. Kinect provides skeleton 
retrieval technology, which reduces the video data volume and 
complexity of vision-based solution. The issue of privacy is a 
stereotype that can also be tackled with such technology as we 
only use and kept skeleton data that includes only 25 joints as 
shown in Fig. 2 and such data is not sufficient for the identity 
of a person to be revealed. To avoid the occlusion problem, we 
installed the Kinect sensor on the ceiling to cover as much area 
as possible without occlusion. This way, of course, means that 
the algorithms used for HAR has to be specially designed to 
allow ADLs to be recognized accurately. 

 
TABLE II 

AVAILABLE SENSORS FOR HAR 

Sensor type Video sensor Ambient sensor Wearable sensor 

Sensor 

Kinect v1/v2  
MoCap  

Intel RealSense  
Stereo cameras 
Single cameras 

 

Pressure/force  
Passive Infrared  

RFID  
Wi-Fi  

Microphone  
Ultrasonic 

Inertial Measurement 
Units (IMUs)  

Biosensors 
GPS 
EEG 
ECG 

Sensor/data 

Depth 
RGB 

Motion/skeleton 
Infrared 

Light 
Sound 
Motion 
Door 

Vibration 
Pressure 

Body temperature 
Heart rate 

Accelerometer  
Gyroscope  
ECG/EEG 

Steps 

Advantage Nonintrusive Nonintrusive Location unlimited 

Disadvantage 

Occlusion/view 
point limited 

Light condition 
Pervasiveness 

Computational cost 
Privacy 

Location limited 
Installation 
complexity 

Maintenance 
 

Intrusive/obtrusive 
Acceptance of subject 

Battery life 

 
Fig. 2 Skeleton joints of Kinect v2 sensor 

B. Sensor Installation 
When other benchmarking datasets such as PKU-MMD [27] 

or NTU RGB+D [28] were collected, video sensors were 
usually mounted in front of the subjects. The problem with this 
is that the subjects could easily be occluded in real 
environments. For our case, the video sensor is mounted on the 
ceiling so as to cover the whole monitoring environment as 
much as possible. The use of fewer video sensors also has the 
benefit that labeling time can be reduced. With this sensor 
arrangement, we collected a dataset that is small yet sufficient 
for developing skeleton based HAR models that can be used for 
home healthcare. Fig. 3 shows two examples of ADLs that we 
collected data for. We provide here 3 sampled RGB frames 
captured by the Kinect v2 sensor. 

Fig. 3 Sample frames of “Eat with chopsticks” and “sweep the floor” 

C. Collecting ADLs 
Publicly available datasets, such as the NTU RGB+D 120 

dataset, is expanded from the NTU RGB+D 60 dataset by 
adding more fine-grained activities like hand or finger motions 
and object-related individual actions. It also adds more 
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challenging activities that share some similarities like similar 
body motions, similar objects, and similar gestures. These 
public datasets are usually collected for developing new HAR 
algorithms that can improve over existing algorithms by being 
able to recognize greater number of activities, faster detection 
speed with higher accuracy. However, not all these activities 
are relevant to ADLs. For the purpose of our applications, we 
examine the characteristics of ADLs of an elderly person living 
independently and collected a dataset from the subject that 
includes activities that the subject performs in the morning (see 
Table III). The dataset is different from existing benchmark 
datasets in three aspects. First, it is collected in a real 
environment and the activities are performed naturally. Unlike 
other datasets, the subject does not act for the purpose of data 
collection. Second, it is collected for recognizing daily routines 
that involve ADLs with proper granularity. Third, activities are 
collected over a period creating a dataset of size that is large 
enough for training a recognition model. 

 
TABLE III  

ADLS IN THE COLLECTED MORNING ROUTINE DATASET 
Activity Label Activity Name ADLs Type Times 

1 lie down BADLs 9 
2 get up BADLs 9 
3 comb hair BADLs 11 
4 pour water BADLs 9 
5 drink water BADLs 9 
6 eat with chopsticks BADLs 10 
7 eat with irons poon BADLs 10 
8 eat with pottery spoon BADLs 12 
9 tidy table IADLs 16 

10 wipe table IADLs 9 
11 sweep the floor IADLs 19 
12 wear shoes BADLs 17 

 
As discussed above, we used the Kinect v2 sensors to collect 

our dataset. For any one particular activity being monitored, 
using the Kinect v2, we record a sequence of skeleton body 
frames corresponding to the actions performed. Each skeleton 
body frame consists of 25 joints (see Fig. 2) which can be 
labelled as HEAD, NECK, …, FOOTLEFT, etc. For a set of 
joints in a body frame that is observed at time t, let us represent 
the set as  where  is the 3-D cartesian 
coordinates of the position of joint  so that  
with ,  and  correspond to the values of the x-, y- and z-
coordinates, respectively. An activity that begins at time  
and ends at time  with body frames collected at regular 
intervals can, therefore, be represented as a time series of  
skeleton frames, . With  training 
samples, we will have  = { , , …, ,… } for training. 

IV. HARELCARE: A FRAMEWORK FOR ELDERLY ACTIVITY 
RECOGNITION 

In this section, we present a framework for the recognition of 
ADLs using a machine learning algorithm we propose. This 

framework covers all steps it takes to process raw data collected 
from the sensor selection to the recognition of ADLs. Under an 
analysis of the existing methods within the framework, a 
transfer learning algorithm method is introduced for ADLs 
recognition. 

A. ADLs Recognition Framework 
The raw data that we make use of for HAR are obtained from 

a Kinect sensor and can be represented, as discussed above, as 
 This set of raw data is therefore a set of 

multivariate, spatial-temporal data. Traditionally, algorithms 
like the DTW [35], HMM [36], and SVM [37] have been 
proposed for developing predictive models for HAR based on 
skeleton data. More recently, deep learning algorithms [38] 
have been used for this task. The relative merits of these 
algorithms depend on such factors as accuracy, processing 
speed, and ease-of-deployment and there is always a need for 
us to develop an algorithm that can perform better according to 
these factors. 

 
Fig. 4 HARELCARE: ADLs recognition framework 

Towards this goal, we propose a 4 steps framework called 
HARELCARE (see Fig. 4) to better tackle the ADLs 
recognition. Under such a framework, we can develop a 
combination of different component algorithms to best address 
different problems and sub-problems. For example, we could 
make use of traditional feature modelling algorithms or more 
recent DL methods. For DL methods, feature modeling may or 
may not be necessary as DL methods may learn feature 
representation at the last fully connected layer. 

In deciding what algorithms to develop for HAR, we note 
that algorithms with high processing speed could be easier to 
deploy but these algorithms usually perform with relatively 
lower accuracy. On the other than, algorithms that are 
computationally slow may perform better in terms of accuracy. 
For example, the use of the AdaBoost algorithm in the Visual 
Gesture Builder (VGB) tool [39] for the recognition of a single 
activity could be implemented with the proposed framework. 
Based on the use of a set of features selected from transformed 
raw data, the AdaBoost algorithm could be used effectively for 
single activity recognition with a confidence value ranging 
from 0 to 1. Using an extension of AdaBoost for the recognition 
of multiple activities could achieve an accuracy of 0.63 on the 
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MSRDailyActivity3D dataset [40]. 
For higher accuracy, many DL methods have been used for 

skeleton based HAR. Some make use of raw skeleton data as 
input and fed the data directly to DL models using such popular 
algorithms such as the Convolutional Neural Network (CNN) 
or Long Short-Term Memory (LSTM) algorithms for training 
[41, 42]. Some propose to use the context-aware LSTM 
algorithms [43] for training with the attempt to make the model 
focus on active skeleton joints that contribute more to the 
accuracy. There has also been some effort to remove noise in 
the skeleton data for view-invariant recognition using the 
approaches described in [44, 45]. In addition to these attempts, 
another potentially effective method for HAR is to use 
contextual information to improve HAR accuracy by modeling 
human-object interaction [46]. In addition to all these, there has 
recently been some effort to use multimodal approaches to 
HAR [47]. Instead of scaling up on the input data, spatial and 
temporal DL models like ST-LSTM [48] and ST-GCN [49] 
have been shown to be quite effective in handling the sparse 
skeleton data. 

Even though these DL approaches are relatively more 
accurate, they require big datasets for training and it should be 
noted that it may not always be easy for big datasets to be 
collected. To avoid this problem, we propose a transfer learning 
method [50] that can be used for post-processing after the ST-
GCN algorithm [49] is adopted. 

B. Transfer Learning 
Collecting less data could ease the deployment of activity 

recognition, however, DL models are usually face with 
overfitting when no sufficient data is available. Transfer 
learning that fine-tunes a pre-trained DL network weights from 
one task to another similar task have been proven helpful, which 
is a common strategy for transfer learning in the context of deep 
learning. [51] grouped transfer learning for HAR in three 
scenarios: inter-person, inter-device, and inter-ambiance. As 
ST-GCN [49] shows the potential for representing spatial and 
temporal features of skeleton data, we propose to use it as the 
backbone model for transfer learning. Precisely, we tune the 
weights of ST-GCN trained on the NTU-RGB+D dataset to our 
dataset. Our transfer learning method could be considered as 
inter-ambiance since we use different data collection 
environment with NTU-RGB+D. ST-GCN is basically a Graph 
Convolutional Network (GCN) designed to learn a 
representation of both spatial and temporal features from graph 
data. GCN is efficient to represent the sparse skeleton data, 
which is symbolized as , where  denotes the 
skeleton joints and  demotes the skeleton bones time , 
respectively. A node  will have a neighbor set defined as 

 where  is to limit the length 
of . Assuming that we have  subsets in every 
neighbor set  of a node , it will be indexed by a 
mapping  Then the convolutional 
operation of the graph could be calculated as 

 
  (1) 

where  is the feature of  that is equal to , 
 is a weight function W  that 

could be implemented by indexing a tensor of  
dimension. While  is a 
normalization term that equals to the cardinality of the 
corresponding subset. With the specific partitioning strategy 
determined, Equation 1 could be implemented with adjacency 
matrix  as 
 

  (2) 
 
where  is a degree matrix. Weiss et al. [52] 
performed a through survey for the transfer learning, which 
classifies transfer learning according to different categories as 
homogeneous transfer learning solutions, heterogeneous 
transfer learning solutions, and solutions addressing negative 
transfer that were further grouped to sub-categories. According 
to the categorization of [52], our method is homogeneous 
transfer learning as the feature space  of the target domain 

 (our dataset) has the same data structure with the feature 
space  of source domain  (the NTU-RGB+D dataset). We 
use the trained weights  from the feature space  to tune 
the weights  for . The transfer learning method is 
elaborated in Algorithm 1, which introduces the fine-tuning 
process. 

Algorithm 1: Transfer Learning 
Data: , the input data  
Output: , the output of the target domain 
1. Load weights  that is trained by using  
2. Modify output layers of ST-GCN to adapt the output  of   
3. Feed  to the modified model 
4. For i = 1 to epoch M do  
5.       For j = 1 to batch N do 
6.             Update   
7.       End 
8. End 
9. Use  to infer  

V. EXPERIMENTS 
In this section, we explain how the experiments are set up to 

evaluate the performance of the proposed method. 

A. Evaluation Measures 
For performance evaluation, we perform cross-validation on 

all the above algorithms that we described to compare their top-
1 accuracy which is defined as 

 

 . (3) 
 

The top-1 accuracy measure reflects the matching between 
the model prediction and the ground truth must be exactly the 
same. With the accuracy measure set as top-1, a confusion 
matrix, also known as error matrix, can be constructed as shown 
in Table IV. This matrix could be used to visualize the 
performance of a supervised classification algorithm with two 
or more classes [53]. To evaluate the models, we accumulate 
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five folds and normalize the entries in the confusion matrix for 
further comparison of the overall performances of different 
HAR algorithms. 

 
TABLE IV  

A SAMPLE OF CONFUSION MATRIX WITH 5 CLASSES 

A
ct

ua
l C

la
ss

 1      

2      

3      

4      

5      

  1 2 3 4 5 

  Predicted Class 

B. Experiment Setting 
For our experiments, we used k-fold cross-validation with k 

following the convention set to 5 [54]. During the training, all 
the other settings are the same except that we initialized the 
weights trained on NTU-RGB+D at epoch 80. The training 
procedure of our transfer learning method follows the 
Algorithm 1, where we replaced the final 2D convolutional 
layer (256, 60) of ST-GCN with a linear layer (256, 12). In the 
learning process, the epoch number in all experiments were set 
to 200. The leaning rate decay parameter of ST-GCN were 
empirically set at 40, and 100. All other hyper parameters are 
the same with the original setting. We set the interval of 
retrieving progressive training information to 10, which means 
it will record results of training mean average loss, testing mean 
average loss, and top-1 accuracy with an interval of 10 epochs. 
All the training process and evaluation were run on a 
Supermicro GPU Server (model SYS-7048GR-TR) with 4 
GTX 1080 Ti GPUs. 

C. Experimental Results 
Table V shows the top-1 accuracy of both the ST-GCN 

model and our transfer learning algorithm. From the results we 
could observe that transfer learning achieved better top-1 
accuracy in every cross-validation fold. The average top-1 
accuracy of transfer learning is 91.64%, which is significantly 
higher than that of the ST-GCN (68.42%). It indicates the 
practical ability of transfer learning method for real-world 
healthcare applications when there is not enough training data. 

 
TABLE V  

TOP-1 ACCURACY ON ST-GCN AND TRANSFER LEARNING 

CV Folds   ST-GCN Transfer Learning 

Fold 1   66.67% 83.33% 
Fold 2   77.41% 93.10% 
Fold 3   67.86% 92.86% 
Fold 4   55.17% 93.10% 
Fold 5   75.00% 95.83% 

Average   68.42% 91.64% 

 
Other than showing improvement of the top-1 accuracy by 

using transfer learning, the confusion matrices of them are 
visualized to further investigate the improvement as shown in 
Table VI and Table VII, respectively. From Table VI, it is noted 
that ST-GCN could not performed well on some activities like 

“get up”, “eat with chopsticks”, and “eat with iron spoon”.  
There is still some improvement space when tackle with a 
relatively small dataset that tends to be overfitted by DL 
models. In other words, if a dataset is too small, there is a need 
for local minimum to be avoided and for the model to be more 
effectively optimized. According to the results as presented in 
Table VII, the performance of the proposed transfer learning 
algorithm is close to optimum and there is little space for further 
improvement. Closer examination of the cases that the model 
failed to correctly recognize is mainly due to the big bias or 
unexpected noise like failure of skeleton detection by the Kinect 
v2 sensor. 

 
TABLE VI  

ACCUMULATED AND NORMALIZED CONFUSION MATRIX OF ST-GCN 
 

Tr
ue

 L
ab

el
 

1 0.78 0.22 0 0 0 0 0 0 0 0 0 0 

2 0.67 0.33 0 0 0 0 0 0 0 0 0 0 

3 0 0 1 0 0 0 0 0 0 0 0 0 

4 0 0 0 0.56 0 0 0 0 0 0 0 0.44 

5 0 0 0 0.22 0.67 0 0 0 0 0 0 0.11 

6 0 0 0 0.4 0 0.1 0.1 0.4 0 0 0 0 

7 0 0 0 0.5 0 0 0.2 0.3 0 0 0 0 

8 0 0 0 0.17 0 0.08 0.25 0.5 0 0 0 0 

9 0 0 0 0 0 0 0 0 1 0 0 0 

10 0 0 0 0 0 0 0 0 0.11 0.89 0 0 

11 0 0 0 0 0 0 0 0 0.37 0 0.63 0 

12 0 0 0 0 0 0 0 0 0 0 0 1 

  1 2 3 4 5 6 7 8 9 10 11 12 

  
Predicted Label 

TABLE VII 
ACCUMULATED AND NORMALIZED CONFUSION MATRIX OF TRANSFER 

LEARNING 
 

Tr
ue

 L
ab

el
 

1 1 0 0 0 0 0 0 0 0 0 0 0 

2 0 1 0 s0 0 0 0 0 0 0 0 0 

3 0 0 1 0 0 0 0 0 0 0 0 0 

4 0 0 0.11 0.67 0.11 0 0 0.11 0 0 0 0 

5 0 0 0 0 1 0 0 0 0 0 0 0 

6 0 0 0 0 0 0.8 0 0.2 0 0 0 0 

7 0 0 0 0 0 0 1 0 0 0 0 0 

8 0 0 0 0 0 0.08 0 0.92 0 0 0 0 

9 0 0 0 0 0 0 0 0 1 0 0 0 

10 0 0 0 0.11 0 0 0 0 0 0.67 0.22 0 

11 0 0 0 0 0 0 0 0.05 0 0 0.95 0 

12 0 0 0 0.06 0 0 0 0.06 0 0 0 0.88 

  1 2 3 4 5 6 7 8 9 10 11 12 
  Predicted Label 

VI. CONCLUSION WITH DISCUSSION 
This paper introduced an ADLs recognition framework 

called HARELCARE that could be used for daily routine 
collection for independent elderly people. We investigated the 
related works of HAR in terms of sensors and datasets for the 
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development of real-world ADLs recognition methods. Then 
we utilized the Kinect v2 sensor and adopted a transfer learning 
method onto the collected morning routine dataset. The 
activities in our dataset is based on the concern of NCDs 
prevention with a need to automatically collect ADLs. 
According to the experimental results, even small dataset could 
achieve great accuracy by using our transfer learning method. 
With such a promising result, our method has a great potential 
to be applied to healthcare application scenarios like habit 
perception, intervention performance evaluation, disease 
prediction, and adaptive (automatic) smart home. 

Although we achieved high accuracy on the morning routine 
dataset, one current trend for HAR is using multimodal data for 
recognizing activities with higher resolutions. Weather adding 
extra modalities will improve the existing HAR tasks remains 
controversial. Hence, more research is required to investigate 
advanced HAR methods that provides more detailed 
information for evidence-based diagnosis and treatment. 
Besides, other sensors like RealSense could be used to get more 
fine-grained features like emotion, eye gaze, and facial 
expression, which will benefit real world scenarios like elderly 
home and houses of independent elderly people. Although 
medical datasets for various diseases are widely available, the 
lack of behavior datasets remains an issue for developing 
evidence-based therapies to prevent the elderly suffering from 
NCDs. As far as we know, there are very few field studies that 
last for a long activity monitoring period and conduct a long-
term HAR based disease evaluation. With the high accuracy of 
our HAR method on the morning routine dataset in the real 
world environment, one of our future jobs is to collect and 
accumulate daily behavioral data by applying our method to 
homes of independent elderly people, and then analyze the 
behavioral data to infer symptoms related to NCDs. 
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