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Video Classification by Partitioned Frequency
Spectra of Repeating Movements

Kahraman Ayyildiz and Stefan Conrad

Abstract—In this paper we present a system for classifying videos
by frequency spectra. Many videos contain activities with repeating
movements. Sports videos, home improvement videos, or videos
showing mechanical motion are some example areas. Motion of these
areas usually repeats with a certain main frequency and several side
frequencies. Transforming repeating motion to its frequency domain
via FFT reveals these frequencies. Average amplitudes of frequency
intervals can be seen as features of cyclic motion. Hence determining
these features can help to classify videos with repeating movements.
In this paper we explain how to compute frequency spectra for video
clips and how to use them for classifying. Our approach utilizes series
of image moments as a function. This function again is transformed
into its frequency domain.

Keywords—action recognition, frequency feature, motion recogni-
tion, repeating movement, video classification

I. INTRODUCTION

V IDEO annotation and action recognition plays a cen-
tral role in computer vision, since video surveillance

systems, human-computer interfaces, or motion recognition
software have a growing interest. Beside the World Wide Web
with online video portals [6] and online video stores [1] there
are many other branches and institutions with large video
archives. Some examples are museums, the media branch,
major corporations, or governmental institutions. All these
areas need efficient algorithms for classifying the amount of
existing clips or videos automatically.

Provider sided classification ensures quality of indexing
process, but has high costs. On the other hand user sided
classification has low costs without ensuring quality. Both
approaches usually annotate videos with general descriptions,
which capture the mean content. Beyond this mean content
videos contain activities, which are not captured by common
annotations. An automatic indexing and annotating process can
reduce costs, capture specific information and ensure quality.
A bulk of work regarding automatic video classification exists
in literature. Nevertheless video classification by frequencies
of repeating movements is sparsely documented.

In this work we explain an approach, which uses frequency
features from cyclic motion in videos for classification. As
a first step regions with movement are detected for each
frame. These regions lead to image moments for each frame,
where a series of image moments represents a function. This
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function again matches one moment to each frame of a
video. Transforming this function via fast Fourier transform
(FFT) spans a frequency spectrum. A partitioning of this
spectrum into intervals of same length reveals different average
amplitudes for each interval. Combining average amplitudes
gives a multidimensional feature vector for each clip. Once
feature vectors are determined, a classifier can assign each
clip to a class.

Our approach is related to our previous research work. In
[2] we describe an approach, which utilizes main frequencies
of repeating motion. The main difference to this work is the
feature extraction stage. In [2] we extract just two to six
frequencies with maximal amplitudes. In this paper we focus
on the whole frequency spectrum and the amplitude height has
a stronger affect on classification process. These differences
lead to more accurate test results than in [2].

The following section gives an overview of the entire video
classification process. It describes how features are extracted
and used by classifiers. Moreover we define image moments
and how to derive so-called 1D-functions from these moments
in section III. In section IV we define AAFIs as the basic of
feature vectors (Average Amplitudes of Frequency Intervals).
Afterwards in section V our radius based classifier RBC is
introduced and explained. In section VI we evaluate the idea
of video classification by AAFIs. Next section VII discusses
and compares work related to our approach. The last section
reviews the proposed methods.

II. CLASSIFYING VIDEOS BY FREQUENCY SPECTRA

In this section we explain methods used for our approach,
where fig. 1 offers an overview of the different stages.
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Fig. 1: Flow diagram of whole classification process

The goal of the whole classification process is to classify
video sequences with repeating movements properly. Some
examples for activity with repeating movement are jumping,
playing tennis or hammering. At first regions of movement
are detected in every clip for each frame. Region detection
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is performed by measuring the color differences of pixels in
two consecutive frames (see section III-A). These regions give
rise to image moments, where our approach applies two types
of moments: centroids and pixel variances. Series of these
moments are considered as 1D-functions, which represent the
motion in a clip. Transforming 1D-functions via FFT gives
the frequency domain. Partitioning the frequency axis into
intervals of same length, average amplitudes for each interval
can be calculated. We name these averages AAFIs (Average
Amplitudes of Frequency Intervals). AAFIs constitute the
feature vector of a clip with regard to its motion. Once the
feature vector of a video is determined, a classifier decides to
which class this video fits best by comparing its feature vector
to feature vectors of other videos stored in database.

III. IMAGE MOMENTS AND 1D-FUNCTIONS

So as to compute frequency domains for video scenes
motion has to be localized frame by frame. Image moments
and resulting 1D-functions depend on this motion. Next we
explain how to detect regions of motion and how to derive
1D-functions from these regions.

A. Regions of Motion

In fig. 2 we illustrate the detection of regions with motion by
analyzing one of our clips. We see two consecutive frames with
a person troweling a wall. Color differences between these
frames are measured for each pixel. A pixel is considered to
be a pixel which is part of a movement, if two conditions
are fulfilled: Firstly the color difference of a pixel has to
exceed a predefined threshold. Secondly there have to be
enough neighbor pixels with a color difference beyond the
same threshold. Thus we define a region of motion as the
affiliation of pixels with motion.

Fig. 2: Regions with pixel activity and centroid

The binary image below the two frames compared shows
the regions with movement. Further on the centroid of regions
with motion lies exactly on the right hand, because the trowel,
the right hand, and the right arm of the home improver
represent the main motion in the frame. Hence the centroid
follows the movement of the troweling.

B. Image Moments

The weighted average of pixel intensities of a picture is
called image moment. An image moment can describe the
area, the bias, or the centroid of segmented image parts. Two
main types of image moments do exist: raw moments and
central moments. Raw moments are sensitive to translation,
whereas central moments are translation invariant. For a two
dimensional binary image b(x, y) and i, j ∈ N a raw moment
Mij is defined as follows [14]:

Mij =
∑

x

∑

y

xi · yj · b(x, y) (1)

Mij is always of the order (i + j). Hence M00 de-
termines the area of segmented parts, where (x̄, ȳ) =
(M10/M00,M01/M00) defines the centroid of segmented
parts. Now central moments can be figured by applying
centroid coordinates [14].

μij =
∑

x

∑

y

(x− x̄)i · (y − ȳ)j · b(x, y) (2)

Here μ20 and μ02 represent the variances of pixels with
regard to x and y coordinates, respectively.

C. Deriving 1D-functions

We define a 1D-function f as a series of one-dimensional
moment values. This series corresponds to the order of frames
in a video and depends on time t, which leads to function f(t).
Let (x̄t, ȳt) = (M10t/M00t ,M01t/M00t) for the coordinates
of a centroid with respect to time t. Then function fc(t) =
(x̄t, ȳt) implies:

fcx(t) = x̄t ∧ fcy (t) = ȳt (3)

In section VI fcx(t) and fcy (t) are used for experimental
test series instead of fc(t), because transforming 1D-functions
results in better accuracies than transforming 2D-functions.
For the same reason two separate 1D-functions of central
moments are implemented and tested:

fvx
(t) = μ20t , fvy

(t) = μ02t (4)

For any 1D-function f(t) we define the speed of an image
moment at time t as follows:

fs(t) = |f(t)− f(t− 1)| (5)

The direction of a moment at time t is defined by 6.

fd(t) =

⎧
⎪⎪⎨

⎪⎪⎩

+1, if f(t)− f(t− 1) > 0

0, if f(t)− f(t− 1) = 0

−1, if f(t)− f(t− 1) < 0

(6)
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IV. AAFIS AS FEATURE VECTORS

This section explains how 1D-functions lead to feature vec-
tors for clips. As already mentioned each 1D-function can be
transformed to its frequency spectrum by FFT. Partitioning this
spectrum into intervals of same length, an average amplitude
for each interval can be stated.

Fig. 3 depicts this idea by partitioning a frequency spectrum
with a length of m = 256 units to n = 8 intervals. Using the
fast Fourier transform variables m and n have to be a power of
2, where m ≥ n. Further the horizontal, orange lines mark the
average amplitude of each interval. Hence with regard to fig.
3 one 1D-function leads to 8 average amplitudes respectively
to one 8-dimensional feature vector. Due to the fact, that
videos produce two 1D-functions, each video is described by
two 8-dimensional feature vectors in this example. Thus a
partitioning of the frequency spectrum into n intervals results
in a (2 · n)-dimensional feature vector for each video.

256

AAFI

0 32 64 96 128 160 192 224

Amplitude

Frequency

100

Fig. 3: Average amplitudes of frequency intervals (AAFIs)

Comparing to our previous work [2] feature vectors reveal
much more information about the motion type. In [2] we used
up to 6 frequency maxima for each video as feature vector,
now the whole frequency spectrum is described by AAFIs.

V. RADIUS BASED CLASSIFIER

During our experimental phase we built up a novel classifier,
which turned out as very effective. It uses a predefined radius
around a tested object in order to calculate distances. Because
of the importance of this radius we call our classifier Radius
Based Classifier (RBC).

A. Basic Idea

oa
ε

Ca oa
ε

Cb oa
ε

Cc

Fig. 4: Classifying with RBC

Fig. 4 illustrates how the RBC works: An object oa ∈ B
has to be classified. Therefore it is assigned to each existing
class in order to calculate the class with the smallest distance
dist(oa, Ci). There are three different example classes Ca,
Cb, Cc ∈ C, where each class has its own typical object
distribution. Assigning oa to class Ca reveals, that there are
many objects within radius ε. In class Cb only 2 objects are

present inside the given metric. Objects of class Cc are far
away from oa, so there is no object of this class within radius
ε.

According to these three classes, oa fits best into class Ca,
because it is part of the typical object distribution. At the same
time this fact leads to the smallest distance.

B. Formalization

First we define C = {C1, . . . , Cm} as our set of classes.
Each class Ci ∈ C contains a set of objects, so we define
Ci = {oi1 , . . . , oini

}, Ci �= {} and Ci ∩ Cj = {} for i �= j.
The total of all objects in classes constitutes our training set
A = C1∪ . . .∪Cm. Test set objects in B = {o1, . . . , ol} �= {}
with A ∩B = {} do not belong to any class.

For a given object ob ∈ B, a class Ci ∈ C and a radius
ε the ε-neighborhood Nε(ob, Ci) encloses all objects of class
Ci with a distance to ob smaller than the radius. Furthermore
the distance between two objects is measured by Euclidian
distance.

Nε(ob, Ci) =

{os|os ∈ Ci ∧ disteuclid(ob, os) < ε} (7)

Based upon Nε(ob, Ci) the distance between an object ob
and a class Ci is computed:

dist(ob, Ci) = 1− |Nε(ob, Ci)|
|Ci| (8)

Hence the resulting distance lies in interval [0, 1], where 0
means all objects of one class lie inside ε. On the other side
1 means there is no object within the ε-neighborhood of ob.
Utilizing 8 a class with a minimal distance to ob can be found.

clrbc(ob, C) =

{Ci ∈ C|∀Cj ∈ C : dist(ob, Ci) ≤ dist(ob, Cj)}
(9)

In best case clrbc(ob, C) reveals exactly one next class. Then
the RBC assigns ob to this class. If clrbc(ob, C) reveals more
than just one class, because of equal minimal distances to ob,
one of these classes is chosen at random.

VI. EXPERIMENTS

We have analyzed all exposed methods through three steps.
First, experiments regarding moment type, moment speed
and moment direction are considered. In addition these ex-
periments include different interval sizes. Second, translation
invariance of motion classification is discussed and analyzed.
Third, the runtime of our approach is evaluated. Here class
sizes, the amount of classified videos and again interval sizes
play an important role.

In both of the first two subsections firstly test series with
own video data and secondly test series with external video
data from the online video database youtube.com are realized
[15]. Furthermore tests with own video data are calculated by
m-fold cross validation. 10 classes, where each class consists
of 20 videos, are tested (total 200 videos). External video
data is tested by assigning clips to own classes, because cross
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validation was not possible due to classes with just few clips
(total 102 videos). Each video shows one of the following
10 home improvement activities: filing, hammering, planing,
sawing, screwing, using a paint roller, a paste brush, a putty
knife, sandpaper and a wrench.

A. Raw Moments and Central Moments

In fig. 5 an example of a 1D-function and its transformation
is illustrated. The upper plot shows a 1D-function of a clip
with a person using a wrench. This function regards to the
x-axis coordinate of centroids. One can see, that the centroid
moves from left to right and vice versa, which corresponds
to the movement of the person. Below this 1D-function its
transformation to the spectral domain is plotted. A partitioning
of the frequency axis into m = 32 intervals leads to 32
AAFIs. These AAFIs capture the mean information of the
frequency domain without considering every single unit. There
are significant highs and lows at certain frequencies and
wide ranges with constantly high respectively low amplitudes,
which are all captured by AAFIs and resulting feature vectors.

time(s)

x‐coordinate

frequency

amplitude

Fig. 5: FFT of a 1D-function: Above 1D-function of a person
handling a wrench, bottom FFT of this action

The two line charts in fig. 6 focus on results of test
series with raw moments (centroids) regarding interval sizes.
Moreover results of tests with directional and speed infor-
mation of moments are presented. The left chart refers to
tests with video data, which was produced especially for our
experiments. The right chart relates to external video data
from an internet database [15]. At first glance it becomes
apparent, that recorded video data results in better accuracies
than external video data. This is associated with the fact, that
the external videos have lower quality in the sense of regular
movement, camera positioning and scaling. Furthermore for
both data sources the optimal interval size lies between 4 and
32.

For recorded video data and directional information of
centroids our approach achieves a maximal accuracy of 0.87
at an interval size of 8. That means 174 videos of 200 videos
are assigned properly. Experiments with external videos and
centroid coordinates result in a maximal accuracy of 0.40 at an
interval size of 4. Here 41 of 102 clips are assigned correctly.

In the case of external videos centroid coordinates achieve
higher accuracies than centroid directions, because external
videos contain more irregular movements. For both data
sources the speed information of centroids is a weak feature
for classifying.
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Fig. 6: Accuracies of tests with raw moments
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Fig. 7: Accuracies of tests with central moments

Next we see in fig. 7 results of tests with central moments
(variances). Here own videos result in higher accuracies than
external videos, too. But on the whole accuracies for both data
sources decrease comparing with results of raw moments. For
own video data and directional information of central moments
a maximal accuracy of 0.81 is achieved at an interval size of
4. In contrast to fig. 6 standard and speed information have
similar line progressions here. Both lines do not exceed an
accuracy of 0.50. Compared with centroids utilizing variances
for spectral analysis is a weak approach, because motion inside
a scene cannot be tracked properly by variances. However
directional information of variances (increase or decrease) is
almost as effective as directional information of centroids,
because repeating movements of one class can produce very
different variances, but the directional information of these
variances is mostly similar.

Considering external video data there is a accuracy peak at
an interval size of 16 for directional information. The accuracy
amounts to 0.30. Standard central moments reveal accuracies
between 0.10 and 0.18, speed information of central moments
leads to accuracies between 0.04 and 0.06.

B. Translation Invariance

Different positions of one activity in different videos have
no effect on classification process (translation invariance).
But motion areas shifted within one video have an effect on
classification process. Fig. 8 shows how accuracies change
in this case. The translation takes places for each classified
clip frame by frame. Furthermore tests with different shift
velocities and shift directions are plotted. Again own and
external video sources are integrated. Tests with own videos
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are performed via directional and tests with external videos
are realized via standard information.

For own videos and centroids the accuracy decreases
slightly by increasing velocity of translation, if horizontal or
vertical shift of motion is realized. Here accuracy starts at 0.87
and ends at 0.75 for vertical respectively 0.72 for horizontal
shift. Moreover accuracies of a diagonal translation decrease
rapidly. Starting at an accuracy of 0.87, the accuracy ends up at
0.16. These results differ apparently from horizontal or vertical
shifts behavior. The reason for that is, shifting a centroid along
just one axis does modify just one coordinate. Unmodified
coordinates result in unmodified feature vectors. The yellow
line shows the accuracy for central moments (variance). For
each translation type and velocity the accuracy stays constantly
at 0.81.

Considering test series with external data, it becomes clear,
that accuracies react very sensitive on translation. At the
beginning each curve falls abruptly. Then the curves for
horizontal and vertical translation stay constantly at 0.27 and
0.23. The accuracy curve for diagonal shift ends at 0.17. There
are two reasons for this abrupt decrease: First, external videos
depend much more on just one 1D-function than own videos.
Second, tests with standard moments are more sensitive to
translation than directional information of moments. On the
other side here central moments lead to constant accuracies,
too. For any translation type and velocity the accuracy is 0.30.

According to these experiments it can be stated, that clips
with moving objects or moving cameras can often be classified
more accurate with central moments than with raw moments.
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Fig. 8: Accuracies for moments with translation

The stated accuracies in this and the previous subsection
result from both selected features and RBC. In further test se-
ries, which are not explicitly listed in this work, we compared
the RBC with Bayes Classifier, KNN Classifier and Average
Link Classifier. We detected that the RBC improves results,
but does not affect the relative highs of feature accuracies.

C. Runtime Analysis

After analyzing the accuracy of our system, we focus on
runtime performance. Therefore tests with respect to refer-
enced class size, interval size of AAFIs and the amount of
classified videos are performed. All experiments are realized
by a standard PC with a 2.4 GHz CPU.

Fig. 9 shows the runtime for several class sizes and interval
sizes. Analyzing clips with a length of 512 frames via FFT,

the frequency axis consists of 256 units. Hence an interval size
of 1 unit results in 256 intervals and an interval size of 256
units results in 1 interval.

All line charts in fig. 9 illustrate runtime in seconds for
200 classified clips. There is an increase for each line, when
the amount of intervals is rising. At the same time this
increase becomes clearer, if the class size of referenced classes
increases. This relates to the fact, that the distance of each
classified clip to a class is calculated by involving distances
to each class object. Hence big class sizes combined with big
interval sizes have just little effect on runtime. But big class
sizes combined with small interval sizes does have a clear
effect on runtime.

For a referenced class size of 200 videos and utilized
one interval, the runtime is 859 seconds. Moreover for 256
intervals the runtime is 937 seconds. A referenced class size
of 1000 videos combined with just one interval results in
922 seconds. In addition 1486 seconds are needed for 256
intervals. There is a logarithmic growth for increasing amount
of intervals.
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Fig. 9: Runtime with regard to number of intervals and class
sizes

In fig. 10 we see a linear growth of runtime. The bar diagram
regards to test series with an increasing number of classified
clips. In each test the number of intervals is 256 and the
number of videos in referenced classes is 200.
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Fig. 10: Runtime with regard to the number of classified videos

Beginning at 937 seconds for 200 classified clips, the
runtime peaks at 4653 seconds for 1000 clips. The average
time needed for classifying one video is 4.65 seconds. We
see, a high amount of classified clips has a stronger impact on
runtime than a high amount of clips in referenced classes.
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VII. RELATED WORK

Videos reveal a huge amount of information. Hence video
annotation and classification can be realized in many different
ways. A key-frame based approach for example is introduced
by Pei and Chan in [11]. After detecting scene changes in
videos key-frames are figured out for each scene. Key-frames
lead to feature vectors for each frame and scene. Another
approach is presented by Lienhart in [8]. Here videos are
retrieved by texts within video shots. In [10] Patel and Sethi
describe a method, which is able to detect dialog scenes in
films by analyzing the audio signal.

Research work considering motion focuses mainly on the
gait or the gestures of humans. In [3] the authors use the
flow and the strength of change of pixels as features in
order to determine the motion type of human body parts.
They test seven different action classes by classifying 51
test samples. Accuracies from 0.94 to 0.98 are achieved for
different classifiers. This approach is able to handle motion in
one direction, but repeating movements cannot be recognized.
Moreover in [13] repeating motion of human body parts is
analyzed by tracking Moving Light Displays (MLD). Pieces of
curves described by these MLDs are used as reference patterns
for each clip. We included this idea in our classification system
in order to compare with AAFIs as feature vectors. Results
have shown that repeating motion patterns are a weak solution,
since patterns of the same motion can vary drastically, whereas
the frequency is more reliable. He and Debrunner calculate
Hu Moments for regions with motion in each frame and
count the number of frames until a Hu Moment repeats [7].
This number is defined as frequency. The authors yield high
accuracies for three classes tested, where each class consists
of 16 samples. Because of the reason that Hu Moments are
translation invariant, here the periodic trajectory of an object
cannot be ascertained. Further on only one frequency can be
captured by this method. Another method is proposed by [12].
In this paper the authors divide each frame of a clip into 16
parts of same size, where 6 frames for each repeating motion
are stored. Pixel activities of these 6 x 16 parts give rise to the
motion type. Experiments with seven classes and 40 samples
in total result in high accuracies, but this approach is strongly
sensitive to scaling.

Some research work is strongly related to our frequency
domain based approach. For instance in [9] again MLDs are
utilized, but here the frequency peaks of transformed MLD
curves are considered as features of cyclic motion. The classifi-
cation of different motion types results in high accuracies from
0.84 to 0.96. Unfortunately authors miss to give rise about the
size of tested dataset. Cheng et al. analyze sports videos in
[4]. Series of horizontal and vertical pixel motion vectors are
transformed and result in two main frequencies for each clip.
Again authors state high accuracies for five analyzed sports
activities, but the average class size is three and therefore
not convincing. Davis and Cutler provide a method, which is
able to capture all significant frequency peaks [5]. They obtain
frequency domain by transforming measured self-similarity of
motion as it evolves in time. Experimental results depict an
accuracy of 1.0 for each of three tested classes.

As this comparison to related research shows, our approach
remedies deficits of other methods and offers distinct experi-
mental results.

VIII. CONCLUSION

Previous sections of this paper depict a video classification
and action recognition system based on repeating movements.
Repetitions of movements lead to frequency spectra by trans-
forming 1D-functions of image moments. Beside different 1D-
functions we defined, we explained how frequency spectra
can be utilized for feature extraction and video classification.
Therefore we introduced AAFIs, which are a strong approach
for classifying videos. In addition a novel radius based clas-
sifier was presented, which improved the performance of the
system.

The experimental stage exposed, that our approach works
accurately for centroids as image moments. A maximal ac-
curacy of 0.87 could be measured for recorded video data.
For external videos the maximal accuracy was 0.40. On the
other side for videos including translation of motion translation
invariant central moments work more efficient. Here the highs
at 0.81 for own videos and at 0.30 for external videos stay
constantly at the same level for each shift velocity of motion.
Considering interval sizes, experiments have shown that an
interval size between 4 and 16 for AAFIs gives the best results.
Furthermore runtime tests with big class sizes combined with
small intervals increase the runtime apparently.

In future research work our approach could be modified
by using different interval representations. Instead of AAFIs
variances of intervals could constitute the basic for feature
vectors.
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