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Abstract—This paper deals with the design of a periodic output 

feedback controller for a flexible beam structure modeled with 
Timoshenko beam theory, Finite Element Method, State space 
methods and embedded piezoelectrics concept. The first 3 modes are 
considered in modeling the beam. The main objective of this work is 
to control the vibrations of the beam when subjected to an external 
force. Shear piezoelectric sensors and actuators are embedded into 
the top and bottom layers of a flexible aluminum beam structure, thus 
making it intelligent and self-adaptive.  The composite beam is 
divided into 5 finite elements and the control actuator is placed at 
finite element position 1, whereas the sensor is varied from position 2 
to 5, i.e., from the nearby fixed end to the free end. 4 state space 
SISO models are thus developed. Periodic Output Feedback (POF) 
Controllers are designed for the 4 SISO models of the same plant to 
control the flexural vibrations. The effect of placing the sensor at 
different locations on the beam is observed and the performance of 
the controller is evaluated for vibration control. Conclusions are 
finally drawn. 
 

Keywords—Smart structure, Timoshenko beam theory, Periodic 
output feedback control, Finite Element Method, State space model, 
SISO, Embedded sensors and actuators, Vibration control. 

I. INTRODUCTION 
CTIVE control of vibrations relieves a designer from 
strengthening the structure from dynamic forces and the 

structure itself from extra weight and cost. The need for 
intelligent structures such as smart structures arises from the 
high performance requirements of such structural members in 
numerous applications. Intelligent structures are those which 
incorporate actuators and sensors that are highly integrated 
into the structure and have structural functionality, as well as 
highly integrated control logic, signal conditioning and power 
amplification electronics [2]. 
 Many researchers have proposed and demonstrated AVC 
schemes for vibration suppression in recent years. The early 
studies were mostly focused on surface glued piezoceramics 
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and PZT’s to the structure. But, these have some 
disadvantages such as difficulties to protect the ceramics and 
the connection wires, protection from external environment, 
leads coming out while vibrating, bad coupling with the 
surface, low-signal-to-noise ratio, e.t.c.,. These problems can 
be solved with the embedded piezoceramics in between the 
master structures. This paper deals with the active vibration 
control of a Timoshenko beam for a SISO case using 
embedded piezoelectrics as both actuators and sensors using 
POF method.  
 The work presented in this paper is organized in the 
following sequence. A review of related literature about the 
types of beam models and embedded shear actuation is given 
in section 2. Section 3 gives a introduction to the modeling 
technique (finite element model, sensor and actuator model, 
state space model) of the smart flexible cantilever beam using 
Timoshenko beam theory. A brief review of the controlling 
technique, viz., the periodic output feedback control technique 
is presented in section 4. The design of the proposed 
controller to control the first three dominant modes of 
vibration of the system for different embedded sensor 
locations along the length of the beam for the various SISO 
models of the same plant is discussed in Section 5. The 
control simulation results and discussions are presented in 
Section 6.  Section 7 concludes the paper with conclusions 
followed by the acronyms and the references. 

II. REVIEW OF VARIOUS BEAM THEORIES 
 A precise mathematical model is required for the controller 
design for vibration control to predict the structure’s response. 
Two beam models in common use in structural mechanics are 
the Euler-Bernoulli beam model and the Timoshenko beam 
model, which were discussed in brief in [38], [39]. 
 In the Euler-Bernoulli model [2], [3], [5], [10] bending 
effects, stresses, moments and deformations are considered.  
The effect of shear, axial displacement is neglected as a result 
of which accurate model of the system is not available for 
sophisticated control. The assumption that we make while 
developing this model is that the cross sections of the beams 
remain plane and normal to the deformed longitudinal axis 
before and after bending. Extensive research was carried out 
using this theory by many researchers. The concept of smart 
structures was presented in the survey paper by Culshaw [22] 
and Rao [6]. Smart structures and its numerous applications 
was presented by Baily and Hubbard [5]. Manjunath and 
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Bandyopadhyay [23] presented the active vibration control 
scheme using the POF method. The effect of failure of one of 
the actuators in a multivariable smart system and its control 
using the periodic output feedback control law was discussed 
in [24].   
 In the Timoshenko model [8], [9], [12] - [15], [37] - [39] the 
axial displacement and the shear is taken into consideration 
while developing the model for the structure. Thus, the theory 
corrects the drawbacks and the assumptions made in Euler-
Bernoulli model Theory.  The cross sections remain plane and 
rotate about the same neutral axis as the Euler-Bernoulli 
model, but do not remain normal to the deformed longitudinal 
axis. The deviation from normality is produced by a transverse 
shear that is assumed to be constant over the cross section. 
Because of the above-mentioned reasons, the Timoshenko 
Beam model is far more superior to the Euler-Bernoulli model 
in precisely predicting the beam response.  
  In this context, a brief review of the research work done on 
Timoshenko beams with surface mounted sensors / actuators 
and using embedded sensors / actuators is presented.  
Aldraihem et al. [13] have developed a laminated beam model 
using two theories; namely, Euler-Bernoulli beam theory and 
Timoshenko Beam theory.  Abramovich [14] has presented 
analytical formulation and closed form solutions of composite 
beams with piezoelectric actuators, which was based on 
Timoshenko beam theory.  
 Using a higher-order shear deformation theory, 
Chandrashekhara and Varadarajan [12] presented a finite 
element model of a composite beam to produce a desired 
deflection in beams with clamped-free (C-F), clamped-
clamped (C-C) and simply supported ends. Shear embedded 
piezoelectrics are used nowadays to suppress the vibrations.  
Sun and Zhang [9], [15] suggested the idea of exploiting the 
shear mode to create transverse deflection in sandwich 
structures. Here, he proved that embedded shear actuators 
offer many advantages over surface mounted extension 
actuators.  
 Aldraihem and Khdeir [18] proposed analytical models and 
exact solutions for beams with shear and extension 
piezoelectric actuators and the models were based on 
Timoshenko beam theory and higher-order beam theory 
(HOBT). Exact solutions were obtained by using the state-
space approach. In a more recent work, Zhang and Sun [15] 
formulated an analytical model of a sandwich beam with shear 
piezoelectric actuator that occupies the entire core. The model 
derivation was simplified by assuming that the face layers 
follow Euler-Bernoulli beam theory, whereas the core layer 
obeys Timoshenko beam theory. Furthermore, a closed form 
solution of the static deflection was presented for a cantilever 
beam. Abramovich [14] studied the effects of actuator location 
and number of patches on the actuator’s performance for 
various configurations of the piezo patches and boundary 
conditions under mechanical and / or electric loads.  
 A FEM approach was used by Benjeddou et. al. [17] to 
model a sandwich beam with shear and extension 
piezoelectric elements which is used in our work. The FE 

model employed the displacement field of Zhang and Sun [9] 
[15]. It was shown that the finite element results agree quite 
well with the analytical results. Raja et. al. [16] extended the 
finite element model of Benjeddou’s research team to include 
a vibration control scheme. In [39], Manjunath and 
Bandyopadhyay discussed the modeling and vibration control 
technique for Timoshenko beam with embedded sensors and 
actuators for SISO systems using FOS law. Here, in this 
paper, we control the same models using POF law when the 
beam is subjected to an external disturbance. An improved 2-
node Timoshenko beam model was presented by Friedman 
and Kosmataka [26] that is used in our work.  Azulay et al. 
[27] have presented analytical formulation and closed form 
solutions of composite beams with piezoelectric actuators, 
which is used in our work.  Work on cross-ply beams was 
done by Abramovich and Lishvits [33] which is also used in 
our work.  

III. MATHEMATICAL MODELING OF SMART SANDWICHED 
BEAM WITH EMBEDDED SHEAR SENSORS AND ACTUATORS  

 The mathematical modeling of the sandwiched beam is 
presented in [26], [27], [33], [38], [39]. Accurate model of the 
system is obtained when the shear effects and the axial 
displacement of the beam is considered in modeling of the 
smart structure.  

A. Finite Element Modeling [ F E M ] of the  Sandwiched 
Beam Element [35] [28] 

 
Fig. 1  A flexible sandwiched Timoshenko beam with embedded 

shear sensor and actuator with disturbing force applied at free end 
 

 A sandwiched beam (piezo-laminated composite beam) as 
shown in Fig. 1 is considered. This beam consists of 3 layers, 
viz., the piezo-patch with the rigid foam is sandwiched in 
between two aluminum beam layers. For shear actuation, rigid 
foam is introduced as a core along with PZT to obtain an 
equivalent sandwiched model. The assumption made is that 
the middle layer is perfectly glued to the carrying structure.  
The thickness of the adhesive is neglected (thus, neglecting 
the effect of shear-lag, no slippage or delamination between 
the core layers during vibrations), as a result of which strong 
coupling exists between the master structure and the piezo-
patches.  The beam is stacked properly and then used as a 
composite structure for AVC [9], [15], [26], [27], [33].  The 
beam properties and the assumptions made are presented in 
[39]. 
 Equations of motion of a general non-symmetric piezo-
laminated composite beam with shear deformation and rotary 
inertia is obtained as [26], [27], [33], [34], [37], [39] 
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321 xbxbb ++=θ ,   (5) 

 2
321 xcxccu ++=   (6) 

be the solutions of the Eqns. (1) to (3) where ji ba , and jc ’s 

are the unknown coefficients  ( )4,.....,1=i  and ( )3,.....,1=j  
subject to the boundary conditions 
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where x  is the local axial coordinate of the element. The 
unknown coefficients in the Eqns. (4)-(6) are obtained as [39]   
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  (8) 
where uN , wN θN are the mode shape functions due to the 
axial displacement, transverse displacement and due to the 
rotation or the slope, which are defined as 
 [ ] [ ],654321 NNNNNNNu =  (9) 

 [ ] [ ],10987 NNNNNw =  (10) 

 [ ] [ ]14131211 NNNNN =θ  (11) 
with the elements of the shape function given in [39].  
 Writing the 3 shape functions uN , wN θN  in matrix 
form, we get the relation between the vector of inertial forces 
N and the vector of nodal displacements q  (displacement 
field) as 
 { } [ ]{ }qS=N .   (12) 
 The mass matrix of the particular regular beam element 
[30]-[32] is given by 

 [ ] [ ] [ ][ ] dxNINM
l

T∫=
0

. (13) 

 The stiffness matrix of the particular regular beam element 
[29], [30]-[32]  is given by 

 [ ] [ ] [ ][ ] dxABDBK
l

T∫=
0

.  (14) 

 The values of the matrix coefficients are given in the [39].  
The mass and stiffness matrices of the regular beam element 
are obtained using foam as the core between two facing 
aluminum layers. The mass and stiffness matrices of the 
piezoelectric beam element are obtained by using a shear 
piezoelectric patch between the two facing aluminum layers. 

B. Sensor and Actuator Equations 
 In this section, modeling of the sensor and actuator equation 
[4], [36] is presented.  
 The sensor equation is modeled as  

 

qp &TtV s =)( , (15) 
where q&  is the time derivative of the modal coordinate vector 

(strain rate) and Tp is a constant vector which depends on the 
type of sensor and its finite element location in the embedded 
structure.  
 The input voltage to the actuator is )(tV a  and is given by 

 )()( tVKtV s
c

a =  , (16) 

where cK is the gain of the controller.  

 This controlling voltage when applied to the actuator from 
the controller results in the generation of moments. The work 
done by this moment results in the generation of the control 
force that is applied by the actuator as  

 )(tV a
ctrl hf = ,   (17) 

where Th is a constant vector which depends on the type of 
actuator and its finite element location in the embedded 
structure. 
 If any external forces described by the vector extf  are 
acting then, the total force vector becomes 

 ctrlext
t fff += .   (18) 

C. Dynamic equation of the smart structure 
 The governing equation of the smart structure is obtained as  
 

 t
ctrlext fffKqqM =+=+&& ,    (19) 

where M  is the assembled mass matrix of the smart structure, 
K is the assembled stiffness matrix of the smart structure [36],  
q  is the nodal variable vector and q&&  is the acceleration 
vector.   

 The generalized coordinates are introduced in Eqn. (19) by 
using a transformation gTq =  in order to reduce it further 
such that the resultant equation represents the dynamics of the 
desired number of modes of vibration and the uncoupled 
equations are obtained [23] - [25], [29]. T is the modal matrix 
containing the eigenvectors representing the number of modes 
of vibration of the cantilever beam. The equation (19) after 
applying the transformation and further simplifying becomes 
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 ,**** ffgKgM ctrlext +=+&&    (20) 

where the matrices ,, ** KM ** ff ctrlext and are the 
generalized mass matrix, the generalized damping matrix, the 
generalized external force vector and the generalized control 
force vector. The structural damping matrix is introduced into 
Eqn. (20) by using 
 *** KMC βα +=   (21) 

where *C is the generalized damping matrix (also called as 
Rayleigh damping), which is of the form given in Eqn.  (21), 
α  and β  being the structural constants [36].  The dynamic 
equation of the smart structure is finally given by 

 ***** ffqKgCgM ctrlext +=++ &&& . (22) 

D. State Space Model of the Smart Structure 
 The governing equation in (22) is written in the state space 
form and is obtained as  
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where )(tu  is the control input, )(tr  is the external input to 
the system (impulse disturbance), f is the external force 
coefficient vector.   
 

 The sensor voltage is taken as the output of the system and 
is given by 
 ,)()( tytV Ts == qp &    (24) 
which can be written in the state space form as  
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 Thus, the state space model of the smart system (the state 
space equation and the output equation) is obtained by 
combing the Eqns.  (23) and (25) as 
 

       )x(C)r(E)u(B)x(Ax ttyttt T=++= )(,&   (26)  
where )()(,,,,,),(),( and tytxtutr EDCBA  represents the 
external force input, the control input, system matrix, input 
matrix, output matrix, transmission matrix, external load 
matrix, state vector, system output (sensor output).   
 

 
Fig. 2  Smart beam (actuator at 1st  position, sensor at 2nd  position) 

 
Fig. 3  Smart beam (actuator at 1st  position, sensor at 3rd  position) 

 
Fig. 4  Smart beam (actuator at 1st  position, sensor at 4th position) 

 
Fig. 5  Smart beam (actuator at 1st  position, sensor at 5th position) 

 

 The values of the A, B, C, D, E matrices for the 4 SISO 
models are given shown in the Figs. 2-5 is given in [39] along 
with their characteristics. 

IV. DESIGN OF PERIODIC OUTPUT FEEDBACK CONTROLLER  
 In the following section, we develop the control strategy for 
the SISO representation of the developed smart structure 
model using the periodic output feedback control law [20], 
[21], [23], [24], [38], [40]-[42] with 1 actuator input u  and 1 
sensor output y for the various SISO models of the same 
plant as shown in Figs. 2 - 5. The problem of pole assignment 
by piecewise constant output feedback was studied by 
Chammas and Leondes [40]-[42] for LTI systems with 
infrequent observations. They have shown that by the use of a 
periodically time-varying piecewise constant output feedback 
gain, the poles of the discrete time control system could be 
assigned arbitrarily (within the natural restriction that they 
should be located symmetrically with respect to the real axis) 
using the POF technique. Since the feedback gains are 
piecewise constants, their method could easily be 
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implemented, guarantees the closed loop stability and 
indicated a new possibility. Such a control law can stabilize a 
much larger class of systems. 
 Consider a LTI CT system [21], [23] - [25], [38], [40]-[42] 
given by 
                            ,, CxyBuAxx =+=&  (27) 
which is sampled with a sampling interval of τ secs given by 
the discrete Linear Time Invariant (LTI) system (called as the 
tau system) as 
         ,)()(,)()()1( kxCkykukxkx =Γ+Φ=+ ττ  (28) 

where pmn yux ℜ∈ℜ∈ℜ∈ ,, and τΦ , τΓ  and C are 
constant matrices of appropriate dimensions.  The following 
control law is applied to this system.  The output y  is 
measured at the time instant τkt = , .....,2,1,0=k  We 
consider constant hold function because they are more suitable 
for implementation.  An output-sampling interval is divided 
into N sub-intervals of length Nτ=∆  and the hold 
function is assumed to be constant on these sub-intervals as 
shown in the Fig. 6.  Thus, the control law becomes 

                 ( ) ( ) lNl

l

KKlklk
kyKtu

=∆+≤≤∆+
=

+,1
),()(

ττ
τ

 (29) 

for )1(.....,,2,1,0 −= Nl .  Note that a sequence of N gain 
matrices { }110 .....,,, −NKKK , when substituted in (29), 
generates a time-varying piecewise constant output feedback 
gain  )(tK  for τ≤≤ t0 .  

 
Fig. 6   Graphical illustration of the POF control law 

 
 Consider the following system, which is obtained by 
sampling the system in (27) at sampling interval of 

Nτ=∆ and denoted by ( )C,, ΓΦ  called as the delta 
system : 
             ,)()(,)()()1( kxCkykukxkx =Γ+Φ=+  (30) 
 Assume ( )C,τΦ  is observable and ( )ΓΦ ,  is controllable 
with controllability index ν such that ν≥N , then it is 
possible to choose a gain sequence lK , such that the closed-
loop system, sampled over τ , takes the desired self-

conjugate set of eigen values. Here, we define  
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then, a state space representation for the system sampled over 
τ is  

                       
),()(

),()()(
ττ

ττττ
kxCky

kukxkx N

=
+=+ ΓΦ  (33) 

where  [ ]ΓΓΦ= − ,........,1NΓ . 

 Applying POF in Eqn. (29), i.e., )( τkyK is substituted for 
)( τku , the closed loop system becomes  

                          ( ) ( ) )( τττ kxCkx N ΓK+Φ=+ . (34) 
 The problem has now taken the form of static output 
feedback [19], [20], [25], [40].  Equation (34) suggests that an 
output injection matrix G  be found such that  
                                     ( ) 1<+Φ GCNρ , (35) 
where )(ρ denotes the spectral radius.  By observability, one 
can choose an output injection gain G  to achieve any desired 
self-conjugate set of eigen values for the closed-loop matrix 
( )GCN +Φ  and from ν≥N , it follows that one can find a 

POF gain which realizes the output injection gain G  by 
solving  
                                           G=KΓ  (36) 
for K .  The controller obtained from this equation will give 
the desired behaviour, but might require excessive control 
action.  To reduce this effect, we relax the condition that 
K exactly satisfy the linear equation and include a constraint 
on it. Thus, we arrive at the following in the inequality 
equation  
                            1ρ<K , .2ρ<− GKΓ    (37) 

 Using the schur complement, it is straight forward to bring 
these conditions in the form of linear matrix inequalities [1], 
[7], [11] as 
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 In this form, the LMI toolbox of MATLAB can be used for 
the synthesis of K [1], [7], [11].  The POF controller obtained 
by this method requires only constant gains and is hence 
easier to implement.  
 Werner and Furuta [20], [21] proposed a performance index 
so that G=ΓK  need not be forced exactly.  This constraint is 
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replaced by a penalty function, which makes it possible to 
enhance the closed loop performance by allowing slight 
deviations from the original design and at the same time 
improving the behaviour.  The performance index )(kJ is 
given by  
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where nnmm PQR ×× ℜ∈ℜ∈ ,, are positive definite and 

symmetric weight matrices, lx and lu denote the states and 

the inputs of the delta system respectively and 
*
kNx denotes 

the state that would be reached at the instant kN , given 

Nkx )1( − , if K is solved to satisfy (36) exactly, i.e., =*
kNx  

( ) Nk
N xCG )1( −+Φ .   

 The first term represents the ‘averaged’ state and control 
energy whereas the second term penalizes the deviation of G . 
A trade-off between the closed loop performance and 
closeness to the chosen design is expressed by the above cost 
function.   

V. POF CONTROLLER DESIGN FOR THE SISO MODELS 
 The FEM model of the smart cantilever beam based on 
Laminate Beam Theory is developed using MATLAB. 
Different state space models of the smart cantilever beam are 
obtained by keeping the actuator location fixed (i.e., at fixed 
end) and varying the position of the sensor from the nearby 
fixed end to the free end as shown in the Figs. 2 - 5. A 
periodic output feedback controller discussed in the previous 
section is designed to suppress the first three modes of 
vibration of the smart cantilever beam. All simulations are 
done using MATLAB. The performance of the beam is 
evaluated for vibration control with the proposed control 
technique.   
 The first task in designing the periodic output feedback 
controller is the selection of the sampling interval τ .  The 
maximum bandwidth for the sensor / actuator locations on the 
beam are calculated (here, the third vibratory mode of the 
plant).  Then, by using the existing empirical rules for 
selecting the sampling interval based on bandwidth, 
approximately 10 times of the maximum third vibration mode 
frequency of the system is selected.  The sampling interval τ  
used is 0.004 secs.  
 Four different configurations of the beam in Fig. 1 are 
considered and shown in Figs. 2 - 5 respectively. In all the 
four cases, the length of the beam is 30 cm and its cross 
section is 1 mm by 2 cm. The length of the peizo patch is 6 cm 
and its cross section is 1 mm by 2 cm. The only change in all 
the 4 models is in the location of the sensor. The material 
properties used for the generation of the FEM model are given 
in [39]. A sixth order state space model of the system is 
obtained on retaining the first three modes of vibration of the 

system as shown in Section 3. The first three natural 
frequencies obtained are 52.03 Hz, 97.21 Hz and 145.81 Hz.   
 A external force extf (impulse disturbance) of 1 Newton is 
applied for a duration of 50 ms at the free end of the beam for 
the systems shown in Figs. 2 to 5 and the open loop impulse 
responses (without control) of the system are observed. 
Controllers based on the periodic output feedback control 
algorithm are designed to control the first three modes of 
vibration of the smart cantilever beam with embedded shear 
sensor and actuator.  The sampling interval used is 0.004 secs 
and is divided into 10 subintervals ( )10N = .  

 Let ( )iii C,, ττ ΓΦ  with i  = 1 to 4 be the discrete time 

systems (tau system) of the systems (Figs. 2 - 5) in Eqn. (26) 
sampled at a rate of τ/1 seconds respectively.  It is found that 
the tau systems are controllable and observable and the tau 
systems are given in [39]. The stabilizing output injection 
gains are obtained for the tau system such that the eigenvalues 
of ( )ii

N
i CG+Φ  lie inside the unit circle and the response of 

the system has a good settling time.  The output injection gain 
obtained is as 
         [ ]63.362.881.124.232.505.41 −−=G  (40) 
for the model 1. Similarly, the output injection gain for the 
other three models is obtained.  The closed loop impulse 
response of the 4 models of the system with the output 
injection gain G is also observed.   
 

 Let ( )iii C,, ΓΦ  be the discrete time systems (delta system) 
of the 4 models of the Fig. 1 in Eqn. (26) sampled at the rate 

∆/1  secs respectively, where N/τ=∆ . The number of sub-

intervals, N is chosen to be 10.  The delta system for the 
SISO models are given in [39].  
 The periodic output feedback gain matrix K for the smart 
system given is obtained by solving ΓK = C using the 
performance index method [20], [21] which reduces the 
amplitude of the control signal u . With the designed 
controller put in the loop, the closed loop impulse response 
(sensor output y ) with the periodic output feedback gain K of 
the system are observed.  The POF gain matrix K for the SISO 
models of the smart Timoshenko beam is given by  

         [
]73.3734.4968.4969.3649.12....

....92.1278.3232.4578.4510.32
−−

−−=T
1K  (41) 

for the model 1. Similarly, the POF gains are obtained for the 
other 3 models of the smart structure plant. The closed loop 
impulse responses (sensor outputs y) of all the models with 
periodic output feedback gain K of the system is observed.  
Also, the variation of the control signal u with time for the 
systems is observed and the conclusions are drawn.    

VI. SIMULATION  RESULTS 
 In this section, we present the simulation results of the 4 
SISO models.  The following figures (Figs. 7 - 10) shows the 
open loop response, closed loop response with the output 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:3, 2008

365

 

 

injection gain G , the closed loop response with the POF gain 
K and the magnitude of the control input u  with time t  for 
the smart cantilever beam with actuator at the first position 
and sensor location varied from second finite element position 
to the fifth finite element position.  The simulation result 
shows the effectiveness of the proposed control. 
 

 
 

 

 
Fig. 7  OL / CL response with G  and  K  / control u  for model 1 

 

  
 

 
 

 
Fig. 8  OL / CL response with G  and  K  / control u  for model 2 
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Fig. 9  OL / CL response with G  and  K  / control u  for model 3 

 

 
 

 
Fig. 10  OL / CL response with G  and  K  / control u  for model 4 
  

 The comparisons of the quantitative results of the OL and 
CL responses (with output injection gain G , POF gain K ) 
and with the magnitude of the control efforts, their settling 
times required is shown in Table I. 

 

TABLE  I 
QUANTITATIVE COMPARITIVE RESULTS OF THE FOS SIMULATIONS 

[TERMS INSIDE THE BRACKETS INDICATE SETTLING TIMES] 
ONLY THE POSITIVE MAGNITUDE VALUES SHOWN 

 

Model Open 
 loop 

Closed 
loop 

with F 

Closed 
loop 

with L 

Control 
input 

u 

1. 8 mV 
(12 secs) 

7 mV 
(4 secs) 

6 mV 
(4 secs) 1 V 

2. 7 mV 
(15 secs) 

6 mV 
(4.5 mV) 

4 mV 
(5 secs) 1.8 V 

3. 6 mV 
(18 sec) 

4 mV 
(5 secs) 

3.6 mV 
(5.5 secs) 2.9 V 

4. 5 mV 
(20 secs) 

(3.2 mV) 
(5.5 secs) 

3 mV 
(6 secs) 3.8 V 

 

VII. CONCLUSIONS 
 A Finite Element model of a smart cantilever beam based on 
Timoshenko Beam Theory with embedded piezoelectric shear 
sensors and actuators is presented for the SISO representation 
of the smart structure in this research paper. Some of the 
limitations of Euler-Bernoulli beam theory, such as the axial 
displacement and the shear are being considered in this work.  
 Different smart cantilever beam models with embedded 
shear sensors / actuators are developed using the Timoshenko 
beam theory for different sensor locations keeping the actuator 
location fixed.  A Periodic Output Feedback (POF) controller 
is designed to control the first three modes of vibration of the 
embedded shear piezoelectric system.  In the SISO case, four 
different models have been considered. The performance of 
the controller is evaluated for different sensor locations while 
the position of the actuator is kept constant.   
 It can be inferred from the response characteristics and the 
simulation results that the magnitude of the control signal u  
increases as the position of the sensor is changed from the 
nearby fixed end and moved towards the free end of the smart 
cantilever beam. The closed loop responses take more time to 
settle, i.e., for the vibrations to get damped out which is 
because of the lesser strain rate.  The impulse responses with 
G and K show better performance when the sensor is at the 
nearby fixed end rather than at the free end.  Thus, it can be 
inferred from the simulation results, that when the plant is 
placed with this controller, the system performs well and 
stability is guaranteed.  
 It is also observed that the maximum amplitude of the 
control voltage required to dampen out the vibrations is less 
when the sensor is placed at FE position 2 than at the free end 
and also the response settles quicker and the vibrations are 
damped out quickly.  From the Fig. 7 - 10, it can be inferred 
that without control the transient response is predominant and 
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with control, the vibrations are suppressed. It is also observed 
from the simulation results that modeling a smart structure by 
including the sensor / actuator mass and stiffness and by 
varying the sensor location at different positions introduces a 
considerable change in the structural vibration characteristics.  
 The output injection gain G for the SISO plant is obtained 
so that its poles are not placed at the origin and has a good 
settling time of less than 10 seconds.  The designed POF 
controller requires constant gains and hence is easier to 
implement in real time. The simulation results show that a 
periodic output feedback controller based on Timoshenko 
Beam Theory is able to satisfactorily control the first three 
modes of vibration of the smart cantilever beam.  
 Surface mounted piezoelectric collocated sensors and 
actuators (piezo-patches bonded to the master structure at top 
and bottom of the single flexible beam) are usually placed at 
the root of the structure (near by the fixed end) to achieve 
most effective sensing and actuation. This subjects the sensors 
/ actuators to high longitudinal stresses that might damage the 
brittle piezo-electric material. 
 Furthermore, surface mounted sensors / actuators are likely 
to be damaged by contact with surrounding objects 
piezopatches coming out while vibrating, connections coming 
out, due to thermal effects, stray magnetic fields, noise 
signals, etc.,. Embedded shear sensors / actuators can be used 
to alleviate these problems. The limitations of Euler-Bernoulli 
beam theory such as the neglection of the shear φ  and axial 
displacements have been considered here while modeling the 
beam. Timoshenko beam theory corrects the simplifying 
assumptions made in Euler-Bernoulli beam theory and the 
model obtained can be a exact one.  

ACRONYMS / ABBREVIATIONS 
SISO Single Input Single Output   
FEM Finite Element Method  
FE Finite Element  
LMI Linear Matrix Inequalities 
MR Magneto Rheological  
ER Electro Rheological   
PVDF Poly Vinylidene Fluoride  
SMA Shape Memory Alloys 
CF Clamped Free   
CC Clamped Clamped  
CT Continuous Time 
DT Discrete Time  
OL Open Loop   
CL Closed Loop 
HOBT Higher Order Beam Theory  
LTI Linear Time Invariant  
FOS Fast Output Sampling 
AVC Active Vibration Control 
EB Euler-Bernoulli  
PZT Lead Zirconate Titanate 
DOF Degree Of Freedom 
IEEE Institute of Electrical & Electronics Engineers 
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