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     Abstract—In the present work, study of the vibration of thin 
cylindrical shells made of a functionally gradient material (FGM) 
composed of stainless steel and nickel is presented. Material 
properties are graded in the thickness direction of the shell according 
to volume fraction power law distribution. The objective is to study 
the natural frequencies, the influence of constituent volume fractions 
and the effects of boundary conditions on the natural frequencies of 
the FG cylindrical shell. The study is carried out using third order 
shear deformation shell theory. The analysis is carried out using 
Hamilton’s principle. The governing equations of motion of FG 
cylindrical shells are derived based on shear deformation theory. 
Results are presented on the frequency characteristics, influence of 
constituent volume fractions and the effects of free-free and clamped-
clamped boundary conditions. 
 
    Keywords—Vibration, FGM, Cylindrical shell, Hamilton's 
principle.   

I. INTRODUCTION 
YLINDRICAL shells have found many applications in 
the industry. They are often used as load bearing 

structures for aircrafts, ships and buildings. Understanding of 
vibration behavior of cylindrical shells is an important aspect 
for the successful applications of cylindrical shells. 
Researches on free vibrations of cylindrical shells have been 
carried out extensively [1-5]. Recently, the present authors 
presented studies on the influence of boundary conditions on 
the frequencies of a multi–layered cylindrical shell [6]. In all 
the above works, different thin shell theories based on Love–
hypothesis were used. Vibration of cylindrical shells with ring 
support is considered by Loy and Lam [7]. The concept of 
functionally graded materials (FGMs) was first introduced in 
1984 by a group of materials scientists in Japan [8-9] as a  

 
means of preparing thermal barrier materials. Since then, 

FGMs have attracted much interest as heat-shielding 
materials. FGMs are made by combining different materials 
using power metallurgy methods [10]. They possess variations 
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in constituent volume fractions that lead to continuous change 
in the composition, microstructure, porosity, etc., resulting in 
gradients in the mechanical and thermal properties [11-12]. 
Vibration study of FGM shell structures is important. In this 
paper a study on the vibration of FG cylindrical shells is 
presented. The FGMs considered are composed of stainless 
steel and nickel where the volume fractions follow a power-
law distribution. The study is carried out based on third order 
shear deformation shell theory. The analysis is carried out 
using Hamilton’s principle. Studies are carried out for 
cylindrical shells with free-free (F-F) and clamped-clamped 
(C-C) boundary conditions. Results are presented on the 
frequency characteristics, influence of constituent volume 
fractions and the effects of free-free boundary conditions.  

II. FUNCTIONALLY GRADED MATERIALS 
For the cylindrical shell made of FGM the material 

properties such as the modulus of elasticity E , Poisson 
ratioν and the mass density ρ are assumed to be functions of 
the volume fraction of the constituent materials when the 
coordinate axis across the shell thickness is denoted by z and 
measured from the shell’s middle plane. The functional 
relationships between E ,ν  and ρ  with z  for a stainless 
steel and nickel FGM shell are assumed as [13]. 
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The strain-displacement relationships for a thin shell [14].  
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Fig. 1 Geometry of a generic shell 
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where 1A  and 2A  are the fundamental form parameters or Lame 
parameters, 1U , 2U  and 3U  are the displacement at any point 

( 1α , 2α , 3α ), 1R  and 2R are the radius of curvature related to 

1α , 2α  and 3α  respectively. The third- order theory of Reddy 
used in the present study is based on the following 
displacement field: 
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These equations can be reduced by satisfying the stress-free 
conditions on the top and bottom faces of the laminates, which 
are equivalent to 02313 ==∈∈ at 

2
hZ ±=  Thus, 
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Where
21 3

4
h

C = . Substituting Eq. (12) into nonlinear strain-

displacement relation (4) - (9), it can be obtained for the third-
order theory of Reddy 
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where  
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Where ),( 00 γε  are the membranes strains and ),,,( 32 γγkk ′  are 
the bending strains, known as the curvatures. 
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III. FORMULATION 

Consider a cylindrical shell as shown in Fig. 2, where R  is 
the radius, L  the length and h the thickness of the shell. The 
reference surface is chosen to be the middle surface of the 
cylindrical shell where an orthogonal coordinate system 

zx ,,θ  is fixed. The displacements of the shell with reference 
this coordinate system are denoted by 1U , 2U  and 3U  in 
the θ,x  and z  directions, respectively. 

 
 

Fig. 2: Geometry of a cylindrical shell  
 
For a thin cylindrical shell, the stress -strain relationship are 
defined as 
 

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

∈
∈
∈
∈
∈

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

12

13

23

22

11

66

55

44

2212

1211

12

13

23

22

11

0000
0000
0000
000
000

Q
Q

Q
QQ
QQ

σ
σ
σ
σ
σ

                            (21) 

 
For a isotropic cylindrical shell the reduced stiffness ijQ ( i , 

j=1, 2 and 6) are defined as 
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where E  is the Young's modulus and ν  is Poisson's ratio. 
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where ijQ  are functions of z  for functionally gradient 

materials. Here ijA  denote the extensional stiffness, ijD  the 

bending stiffness, ijB  the bending-extensional coupling 

stiffness and ijijijij HGFE ,,,  are the extensional, bending, 
coupling, and higher-order stiffness. For a thin cylindrical 
shell the force and moment results are defined as 
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IV. THE EQUATIONS OF MOTION FOR VIBRATION OF A 
GENERIC SHELL 

The equations of motion for vibration of a generic shell can 
be derived by using Hamilton's principle which is described 
by 
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Where UK ,,Π and V  are the total kinetic, potential, strain 

and loading energies, 1t and 2t are arbitrary time. The kinetic, 
strain and loading energies of a cylindrical shell can be written 
as: 
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The infinitesimal volume is given by 
 

32121 ααα dddAAdV =                                                           (32) 
 
with the use of Eqs. (11)-(20) and substituting into Eq. (28), 
we get the equations of motions a generic shell. 
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For Eqs. (33) – (37) are defining as 
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V.  EQUATIONS OF MOTION FOR VIBRATION OF CYLINDRICAL 
SHELL 

The curvilinear coordinates and fundamental from 
parameters for a cylindrical shell are: 
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Substituting relationship (39) into Eqs. (33)-(37) the equations 
of motions for vibration of cylindrical shell with the third-
order theory of Reddy are converted to 
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The displacement fields for a FG cylindrical shell and the 
displacement fields which satisfy these boundary conditions 
can be written as 
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where, A , B , C , D  and E  are the constants denoting the 
amplitudes of the vibrations in the θ,x  and z  
directions, 1φ and 2φ  are the displacement fields for higher 
order deformation theories for a cylindrical shell, )(xφ  is the 
axial function that satisfies the geometric boundary 
conditions. The axial function )(xφ is chosen as the beam 
function as 
 
The axial function )(xφ is chosen as the beam function as 
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The geometric boundary conditions for free boundary 
conditions can be expressed mathematically in terms of 

)(xφ as: 
Clamped boundary condition 
 

0)()( =′= xx φφ                                                          (47) 
 
Free boundary condition 
 

0)()0( =′′′=′′ Lφφ                                                          (48) 
 
 Substituting Eq. (45) into Eqs. (40) - (44) for third order 
theory we can be expressed  
 

0)(det 2 =− ωijij MC                                                        (49) 
 
Expanding this determinant, a polynomial in even powers 
ofω  is obtained 
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where )5,4,3,2,1,0( =iiβ  are some constants. Eq. (50) is solved 
five positive and five negative roots are obtained. The five 
positive roots obtained are the natural angular frequencies of 
the cylindrical shell based third-order theory. The smallest of 
the five roots is the natural angular frequency studied in the 
present study. The FGM cylindrical shell is composed of 
Nickel at its inner surface and Stainless steel at its outer 
surface. The material properties for stainless steel and nickel, 
calculated at KT 300= , are presented in table 1. 
 

TABLE  I  PROPERTIES OF MATERIALS 
 
Coefficients       Stainless Steel                        Nickel                                          
                     E           ν         ρ              E            ν           ρ  
 

 P 0       201.04× 109    0.3262    8166    223.95 × 109   0.3100      8900        

 P 1−            0               0            0              0                0            0 

 P 1      3.079× 10-4  -2.002× 10-4  0       -2.794× 10-4         0             0 

 P 2    -6.534× 10-7   3.797× 10-7  0       -3.998× 10-9         0             0 

 P 3          0               0           0              0                     0           0 

      2.07788× 1011  0.317756  8166      2.05098× 1011  0.3100     8900 
 
 
 
 Where 211 ,,, PPPP −  and 3P  are the coefficients of 

temperature )(KT  expressed in Kelvin and are unique to the 
constituent materials. The material properties P of FGMs are 
a function of the material properties and volume fractions of 
the constituent material. 

VI.  RESULTS AND DISCUSSION 
In this paper, studies are presented for vibration of FG 

cylindrical shell. The boundary conditions, free-free (F-F) is 
considered in the study. Natural frequencies of the FG 
cylindrical shell for this boundary conditions is computed and 
plotted in Fig. 3. For this boundary conditions the frequency 
first decreases and then increases as the circumferential wave 
number n increases.  
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Fig. 3 Natural frequencies FG cylindrical shell associated with      F-

F boundary conditions. (m=1, h/R=0.002, L/R=20) 
 
 

 
Fig. 4 Natural frequencies FG cylindrical shell associated with      C-

C boundary conditions. (m=1, h/R=0.002, L/R=20). 
 
 

For simplicity, we actually vary the value of power law 
exponent whenever we need to change the volume fraction. 
Varying the value of power law exponent N of the FG 
cylindrical shell, natural frequencies are computed for simply 
supported-simply supported boundary conditions. Results are 
also computed for pure stainless steel and pure nickel shells. 
All these results are plotted in Fig. 5. 

 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:9, 2010

888

 

 

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12

n

f(HZ)

N=0(SS)
N=0(N)
N=0.5
N=0.7
N=1
N=2
N=5
N=15
N=30

 
Fig. 5 Natural frequencies FG cylindrical shell associated with 

various power law exponent for F-F boundary condition. 

VII. CONCLUSIONS 
   A study on the free vibration of functionally graded (FG) 
cylindrical shell composed of stainless steel and nickel has 
been presented. Material properties are graded in the thickness 
direction of the shell according to volume fraction power law 
distribution. The study is carried out using third order shear 
deformation shell theory. The analysis is carried out using 
Hamilton’s principle. Studies are carried out for cylindrical 
shells with free-free (F-F) boundary conditions. The study 
showed that in this boundary conditions the frequency first 
decreases and then increases as the circumferential wave 
number n increases. The minimum frequency occurs in 
between n equals 2 and 3 for this boundary conditions. The 
results showed that one could easily vary the natural 
frequency of the FG cylindrical shell by varying the volume 
fraction. 
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