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     Abstract—Study of the vibration cylindrical shells made of 
a functionally gradient material (FGM) composed of stainless 
steel and nickel is important. Material properties are graded in 
the thickness direction of the shell according to volume 
fraction power law distribution. The objective is to study the 
natural frequencies, the influence of constituent volume 
fractions and the effects of boundary conditions on the natural 
frequencies of the FG cylindrical shell. The study is carried 
out using third order shear deformation shell theory. The 
governing equations of motion of FG cylindrical shells are 
derived based on shear deformation theory. Results are 
presented on the frequency characteristics, influence of 
constituent volume fractions and the effects of clamped-
clamped boundary conditions.   

 
    Keywords—Vibration, FGM, Cylindrical shell, Hamilton's 
principle.   

I. INTRODUCTION 
YLINDRICAL shells have found many applications in the 
industry. They are often used as load bearing structures for 

aircrafts, ships and buildings. Understanding of vibration 
behavior of cylindrical shells is an important aspect for the 
successful applications of cylindrical shells. Researches on 
free vibrations of cylindrical shells have been carried out 
extensively [1-5]. Recently, the present authors presented 
studies on the influence of boundary conditions on the 
frequencies of a multi–layered cylindrical shell [6]. In all the 
above works, different thin shell theories based on Love–
hypothesis were used. Vibration of cylindrical shells with ring  
support is considered by Loy and Lam [7]. The concept of  
functionally graded materials (FGMs) was first introduced in 
1984 by a group of materials scientists in Japan [8-9] as a 
means of preparing thermal barrier materials. Since then, 
FGMs have attracted much interest as heat-shielding  
 
materials. FGMs are made by combining different materials 
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using power metallurgy methods [10]. They possess variations 
in constituent volume fractions that lead to continuous change 
in the composition, microstructure, porosity, etc., resulting in  
gradients in the mechanical and thermal properties [11-12]. 
Vibration study of FGM shell structures is important. 
However, study of the vibration of FGM shells with ring 
supports is limited. The FGMs considered are composed of 
stainless steel and nickel where the volume fractions follow a 
power-law distribution. The study is carried out based on third 
order shear deformation shell theory. Studies are carried out 
for cylindrical shells with clamped-clamped (C-C) boundary 
conditions. Results presented include the frequency 
characteristics of cylindrical shells, and the influence of 
boundary conditions. The present analysis is validated by 
comparing results with others in the literature. 

II. FUNCTIONALLY GRADED MATERIALS 
For the cylindrical shell made of FGM the material properties 
such as the modulus of elasticity E , Poisson ratioν and the 
mass density ρ are assumed to be functions of the volume 
fraction of the constituent materials when the coordinate axis 
across the shell thickness is denoted by z and measured from 
the shell’s middle plane. The functional relationships 
between E ,ν  and ρ  with z  for a stainless steel and nickel 
FGM shell are assumed as [13]. 
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The strain-displacement relationships for a thin shell [14].  
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where 1A  and 2A  are the fundamental form parameters or Lame 
parameters, 1U , 2U  and 3U  are the displacement at any point 

( 1α , 2α , 3α ), 1R  and 2R are the radius of curvature related to 

1α , 2α  and 3α  respectively. The third- order theory of Reddy 
used in the present study is based on the following 
displacement field: 
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These equations can be reduced by satisfying the stress-free 
conditions on the top and bottom faces of the laminates, which 
are equivalent to 02313 ==∈∈ at 

2
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Where
21 3

4
h

C = . Substituting Eq. (12) into nonlinear strain-

displacement relation (4) - (9), it can be obtained for the third-
order theory of Reddy 
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Where ),( 00 γε  are the membranes strains and ),,,( 32 γγkk ′  are 
the bending strains, known as the curvatures. 

III. FORMULATION 

Consider a cylindrical shell as shown in Fig. 2, where R  is the 
radius, L  the length and h the thickness of the shell. The 
reference surface is chosen to be the middle surface of the 
cylindrical shell where an orthogonal coordinate system 

zx ,,θ  is fixed. The displacements of the shell with reference 
this coordinate system are denoted by 1U , 2U  and 3U  in 
the θ,x  and z  directions, respectively. 
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Fig. 1 Geometry of FGM cylindrical shell  

 
For a thin cylindrical shell, the stress -strain relationship are 
defined as 
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For a isotropic cylindrical shell the reduced stiffness ijQ ( i , 

j=1, 2 and 6) are defined as 
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where E  is the Young's modulus and ν  is Poisson's ratio. 
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where ijQ  are functions of z  for functionally gradient 

materials. Here ijA  denote the extensional stiffness, ijD  the 

bending stiffness, ijB  the bending-extensional coupling 

stiffness and ijijijij HGFE ,,,  are the extensional, bending, 
coupling, and higher-order stiffness. For a thin cylindrical 
shell the force and moment results are defined as 
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IV. THE EQUATIONS OF MOTION FOR VIBRATION OF A 
GENERIC SHELL 

The equations of motion for vibration of a generic shell can be 
derived by using Hamilton's principle which is described by 
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Where UK ,,Π and V  are the total kinetic, potential, strain 

and loading energies, 1t and 2t are arbitrary time. The kinetic, 
strain and loading energies of a cylindrical shell can be written 
as: 
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The infinitesimal volume is given by 
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with the use of Eqs. (11)-(20) and substituting into Eq. (28), 
we get the equations of motions a generic shell. 
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For Eqs. (33) – (37) are defining as 
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V.  EQUATIONS OF MOTION FOR VIBRATION OF CYLINDRICAL 
SHELL 

The curvilinear coordinates and fundamental from parameters 
for a cylindrical shell are: 

xAaA
R

aR ======= 1233122 ,,,0,,01, αθααα                  (39) 

Substituting relationship (39) into Eqs. (33)-(37) the equations 
of motions for vibration of cylindrical shell with the third-
order theory of Reddy are converted to 
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The displacement fields for a FG cylindrical shell and the 
displacement fields which satisfy these boundary conditions 
can be written as 
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where, A , B , C , D  and E  are the constants denoting the 
amplitudes of the vibrations in the θ,x  and z  
directions, 1φ and 2φ  are the displacement fields for higher 
order deformation theories for a cylindrical shell, )(xφ  is the 
axial function that satisfies the geometric boundary 
conditions. The axial function )(xφ is chosen as the beam 
function as 
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The geometric boundary conditions for free boundary 
conditions can be expressed mathematically in terms of 

)(xφ as: 
clamped boundary condition 
 

0)()( =′= xx φφ                                                          (47) 
    
Substituting Eq. (45) into Eqs. (40) - (44) for third order 
theory we can be expressed  
 

0)(det 2 =− ωijij MC                                                        (48) 
 
Expanding this determinant, a polynomial in even powers 
ofω  is obtained 
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where )5,4,3,2,1,0( =iiβ  are some constants. Eq. (49) is solved 
five positive and five negative roots are obtained. The five 
positive roots obtained are the natural angular frequencies of 
the cylindrical shell based third-order theory. The smallest of 
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the five roots is the natural angular frequency studied in the 
present study.  
 

VI.  RESULTS AND DISCUSSION 
To validate the present analysis, results for cylindrical 

shells are compared with Loy and Lam [15] and with 
M.R.Isvandzibaei [16]. The comparisons show that the present 
results agreed well with those in the literature. 
 

TABLE I  
COMPARISON OF NATURAL FREQUENCY (HZ) FOR A SIMPLY SUPPORTED 

ISOTROPIC CYLINDRICAL SHELL. 

3

211
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317756.0,10*07788.2,25.0,08.5,3.20
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mNEcmhcmRcmL

ρ
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n       m     Loy[15]      M.R.Isvandzibaei [16]      Present        
 
 
2        1      2043.8                 2043.6                      2045.1 
          2      5635.4                 5635.2                      5624.6  
          3      8932.5                 8932.1                      8821.5               
          4      11407.5               11407.2                    11437  
          5      13253.2               13252.8                  13197.5             
          6      14790.0               14789.8                  14790.6             
 
 

In this paper, studies are presented for vibration of FG 
cylindrical shell. The boundary conditions, clamped-clamped 
(C-C) is considered in the study. Natural frequencies of the 
FG cylindrical shell for this boundary conditions is computed 
and plotted in Fig. 2. For this boundary conditions the 
frequency first decreases and then increases as the 
circumferential wave number n increases.  
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Fig. 2 Natural frequencies FG cylindrical shell associated with      C-

C boundary conditions. (m=1, h/R=0.002, L/R=20) 
 

For simplicity, we actually vary the value of power law 
exponent whenever we need to change the volume fraction. 
Varying the value of power law exponent N of the FG 
cylindrical shell, natural frequencies are computed for simply 
supported-simply supported boundary conditions. Results are 

also computed for pure stainless steel and pure nickel shells. 
All these results are plotted in Fig. 3. 
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Fig. 3 Natural frequencies FG cylindrical shell associated with 

various power law exponent for C-C boundary condition. 
 

VII. CONCLUSIONS 
A study on the free vibration of functionally graded (FG) 

cylindrical shell composed of stainless steel and nickel has 
been presented. Material properties are graded in the thickness 
direction of the shell according to volume fraction power law 
distribution. The study is carried out using third order shear 
deformation shell theory. The analysis is carried out using 
Hamilton’s principle. Studies are carried out for cylindrical 
shells with clamped-clamped (C-C) boundary conditions. The 
study showed that in this boundary conditions the frequency 
first decreases and then increases as the circumferential wave 
number n increases. The minimum frequency occurs in 
between n equals 2 and 3 for this boundary conditions. The 
results showed that one could easily vary the natural 
frequency of the FG cylindrical shell by varying the volume 
fraction. 
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