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Vibration of Functionally Graded Cylindrical Shells
Under Effect Clamped-Free Boundary Conditions

Using Hamilton’s Principle
M.R. Isvandzibaei, M.R. Alinaghizadeh, and A.H. Zaman

Abstract—In the present work, study of the vibration of thin
cylindrical shells made of a functionally gradient material (FGM)
composed of stainless steel and nickel is presented. Material prop-
erties are graded in the thickness direction of the shell according
to volume fraction power law distribution. The objective is to study
the natural frequencies, the influence of constituent volume fractions
and the effects of boundary conditions on the natural frequencies
of the FG cylindrical shell. The study is carried out using third
order shear deformation shell theory. The analysis is carried out
using Hamilton’s principle. The governing equations of motion of
FG cylindrical shells are derived based on shear deformation theory.
Results are presented on the frequency characteristics, influence of
constituent volume fractions and the effects of clamped-free boundary
conditions

Keywords—Vibration, FGM, Cylindrical shell, Hamilton’s princi-
ple, Clamped supported.

I. INTRODUCTION

CYLINDRICAL shells have found many applications
in the industry. They are often used as load bearing

structures for aircrafts, ships and buildings. Understanding
of vibration behavior of cylindrical shells is an important
aspect for the successful applications of cylindrical shells.
Researches on free vibrations of cylindrical shells have been
carried out extensively [1-5]. Recently, the present authors
presented studies on the influence of boundary conditions on
the frequencies of a multi–layered cylindrical shell [6]. In
all the above works, different thin shell theories based on
Love–hypothesis were used. Vibration of cylindrical shells
with ring support is considered by Loy and Lam [7]. The
concept of functionally graded materials (FGMs) was first
introduced in 1984 by a group of materials scientists in Japan
[8-9] as a means of preparing thermal barrier materials. Since
then, FGMs have attracted much interest as heat-shielding
materials. FGMs are made by combining different materials
using power metallurgy methods [10]. They possess variations
in constituent volume fractions that lead to continuous change
in the composition, microstructure, porosity, etc., resulting in
gradients in the mechanical and thermal properties [11-12].

Vibration study of FGM shell structures is important. In
this paper a study on the vibration of FG cylindrical shells
is presented. The FGMs considered are composed of stainless
steel and nickel where the volume fractions follow a power-law
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Fig. 1. Geometry of a generic shell

distribution. The study is carried out based on third order shear
deformation shell theory. The analysis is carried out using
Hamilton’s principle. Studies are carried out for cylindrical
shells with clamped-free (C-F) boundary conditions. Results
are presented on the frequency characteristics, influence of
constituent volume fractions and the effects of clamped-free
boundary conditions.

II. FUNCTIONALLY GRADED MATERIALS

For the cylindrical shell made of FGM the material prop-
erties such as the modulus of elasticityE, Poisson ratioνand
the mass densityρare assumed to be functions of the volume
fraction of the constituent materials when the coordinate
axis across the shell thickness is denoted by zand measured
from the shell’s middle plane. The functional relationships
betweenE,ν and ρ with z for a stainless steel and nickel FGM
shell are assumed as [13].
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The strain-displacement relationships for a thin shell [14].
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A1 =

∣∣∣∣ ∂r̄∂α1

∣∣∣∣ , Aij (10)

where A1 and A2 are the fundamental form parameters
or Lame parameters,U1, U2 and U3 are the displacement at
any point (α1,α2,α3),R1 and R2are the radius of curvature
related to α1,α2 andα3 respectively. The third- order theory
of Reddy used in the present study is based on the following
displacement field:
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These equations can be reduced by satisfying the stress-free
conditions on the top and bottom faces of the laminates, which
are equivalent to ∈13=∈23= 0at Z = ±h
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where C1 = 4
3h2 . Substituting Eq. 12 into nonlinear strain-

displacement relation 4 - 9, it can be obtained for the third-
order theory of Reddy
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where(ε0 , γ0) are the membranes strains and (k , k′ , γ2 , γ3)
are the bending strains, known as the curvatures.

III. FORMULATION

Consider a cylindrical shell as shown in Fig. 2, whereR
is the radius, L the length and h the thickness of the shell.
The reference surface is chosen to be the middle surface of
the cylindrical shell where an orthogonal coordinate system
x, θ, z is fixed. The displacements of the shell with reference
this coordinate system are denoted byU1,U2 and U3 in thex, θ
and z directions, respectively.

For a thin cylindrical shell, the stress -strain relationship are
defined as
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For a isotropic cylindrical shell the reduced stiffness Qij(i,

j=1, 2 and 6) are defined as

Q11 = Q22 =
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where E is the Young’s modulus and ν is Poisson’s ratio.
Defining
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where Qij are functions of z for functionally gradient
materials. Here Aij denote the extensional stiffness, Dij

the bending stiffness,Bij the bending-extensional coupling
stiffness and Eij , Fij , Gij , Hij are the extensional, bending,
coupling, and higher-order stiffness.

For a thin cylindrical shell the force and moment results are
defined as
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Fig. 2. Geometry of a cylindrical shell

IV. THE EQUATIONS OF MOTION FOR VIBRATION OF A
GENERIC SHELL

The equations of motion for vibration of a generic shell can
be derived by using Hamilton’s principle which is described
by

δ

∫ t2

t1

(Π−K)dt = 0,Π = U − V (31)

where K,Π, Uand V are the total kinetic, potential, strain
and loading energies, t1and t2are arbitrary time. The kinetic,
strain and loading energies of a cylindrical shell can be written
as:
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The infinitesimal volume is given by
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with the use of Eqs. (11)-(20) and substituting into Eq. (28),
we get the equations of motions a generic shell.
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R2

]
I3

−C2
1

R2
(− ü2
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= −{ü3 I◦ + C1

[
∂

∂α1
( u1

A1
) + ∂

∂α2
( u2

A2
)
]
I3

+C1

[
∂

∂α1
( φ̈1

A1
) + ∂

∂α2
( φ̈2

A2
)
]
I4

−C2
1I6((− ∂

R2∂α2
( ü2
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ü1

R1

−C1

A1

∂ü3

∂α1
)I4 + C2

1 (− ü1

R1
+ φ̈1 +

∂ü3

A1∂α1
)I 6]

(40)

−∂(M22A1)
∂α2

+ ∂(C1A1P22)
∂α2

+M11
∂A1

∂α2
− C1P11

∂A1

∂α2

−∂(M12A
2
2)

A2∂α1
+

∂(P12C1A
2
2)

A2∂α1
− 3C1R23A1A2 +A1A2Q23

+C1P23

R2
A1A2 = − [ü2 I1 + φ̈2I2 − C1ü2I3

+(−2C1φ̈2 + C1
ü2

R2
− C1

A2

∂ü3

∂α2
)I4

+C2
1 (

ü2

R2
+ φ̈2 +

∂ü3

A2∂α2
)I 6] .

(41)
For Eqs. (33)-(37) are defining as

Ii =

∫ h
2

−h
2

ραi
3dα3 (42)

V. EQUATIONS OF MOTION FOR VIBRATION OF
CYLINDRICAL SHELL

The curvilinear coordinates and fundamental from parame-
ters for a cylindrical shell are:

R2 = a,
1

R
= 0, A2 = a,A1 = 0, α3 = α3, α2 = θ, α1 = x

(43)

Substituting relationship (39) into Eqs. (33)-(37) the equations
of motions for vibration of cylindrical shell with the third-
order theory of Reddy are converted to

a
∂N11

∂x
+
∂N12

∂θ
= I0ü1 + (I1 − C1I3)φ̈1

−C1I3
∂ü3
∂x

(44)

∂N22

∂θ
+ C1

∂P12

∂x
+Q23 − 3C1R23 + C1P23

= (I0 + 2
C1

a
I3 +

C2
1

a2
I6)ü2

+(I1 − C1I3 +
C1

a
I4 − C2

1

a
I6)φ̈2

−(
C1

a
I3 − C2

1

a2
I6)

∂ü3
∂θ

(45)

−C1a
∂2P11

∂x2
+N22 − C1

a

∂2P22

∂θ2
− 2C1

∂2P12

∂x∂θ

−a∂Q13

∂x

+3C1a
∂R13

∂x
− ∂Q23

∂θ
+ 3C1

∂R23

∂θ
− C1

a

∂P23

∂θ

= −C1I3
∂u1
∂x

− C1

a
I3
∂u2
∂θ

+(−C1I4 + C2
1I6)

∂φ̈1
∂x

+ (−C1

a
I4 +

C2
1

a
I6)

∂φ̈2
∂θ

−C
2
1

a2
I6
∂ü2
∂θ

+ C2
1I6

∂2ü3
∂x2

+
C2

1

a
I6
∂2ü3
∂θ2

− ü3I0 (46)

−a∂M11

∂x
+ C1a

∂P11

∂x
− ∂M12

∂θ
+ C1

∂P12

∂θ
−3C1R13a+ aQ13 = −I1ü1 + C1I3ü1

+(−I2 + 2C1I4 − C2
1I6)φ̈1 + (C1I4 − C2

1I6)
∂ü3
∂x

(47)

−∂M22

∂θ
− C1

∂P22

∂θ
− a

∂M12

∂x
+ C1a

∂P12

∂x

−3C1R23a+ aQ23 + C1R23 = (−I1C1I3 − C1

a
I4)ü2

+(−I2 + 2C1I4)φ̈2 − C1

a
I4
∂ü3
∂θ

(48)

The displacement fields for a FG cylindrical shell and the
displacement fields which satisfy these boundary conditions
can be written as

u1 = Ā ∂φ (x)
∂x cos(nθ) cos(ω t)

u2 = B̄ φ (x) sin(nθ) cos(ω t)
u3 = C̄φ (x) cos(nθ) cos(ω t)

φ1 = D̄ ∂φ(x)
∂x cos(nθ) cos(ω t)

φ2 = Ēφ(x) sin(nθ) cos(ω t)

(49)

where, Ā,B̄,C̄,D̄ and Ē are the constants denoting the am-
plitudes of the vibrations in the x, θ and z directions,φ1 and
φ2 are the displacement fields for higher order deformation
theories for a cylindrical shell, φ (x) is the axial function that
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TABLE I
PROPERTIES OF MATERIALS

Coefficients Stainless Steel
E ν ρ

P0 201.04×109 0.3262 8166
P−1 0 0 0
P1 3.079×10-4 -2.002×10-4 0
P2 -6.534×10-7 3.797×10-7 0
P3 0 0 0

2.07788× 1011 0.317756 8166

Coefficients Nickel
E ν ρ

P0 223.95×109 0.3100 8900
P−1 0 0 0
P1 -2.794×10-4 0 0
P2 -3.998×10-9 0 0
P3 0 0 0

2.05098×1011 0.3100 8900

satisfies the geometric boundary conditions. The axial function
φ (x)is chosen as the beam function as

φ(x) = γ1 cosh(
λmx

L
) + γ2 cos(

λmx

L
)

−ζm(γ3 sinh(
λmx

L
) + γ4 sin(

λmx

L
)) (50)

The geometric boundary conditions for free and clamped
boundary conditions can be expressed mathematically in terms
of φ (x)as:

Free boundary condition

φ′′(0) = φ′′′(L) = 0 (51)

Clamped boundary condition

φ(0) = φ′(L) = 0 (52)

Substituting Eq. (45) into Eqs. (40) - (44) for third order
theory we can be expressed

det (Cij −Mij ω
2) = 0 (53)

Expanding this determinant, a polynomial in even powers
ofω is obtained

β◦ω10 + β1ω
8 + β2ω

6 + β3ω
4 + β4ω

2 + β5 = ◦ (54)

where βi(i = 0, 1, 2, 3, 4, 5) are some constants. Eq. (50) is
solved five positive and five negative roots are obtained. The
five positive roots obtained are the natural angular frequencies
of the cylindrical shell based third-order theory. The smallest
of the five roots is the natural angular frequency studied in
the present study. The FGM cylindrical shell is composed
of Nickel at its inner surface and Stainless steel at its outer
surface. The material properties for stainless steel and nickel,
calculated at T = 300K, are presented in table 1 where
P◦, P−1, P1, P2 and P3 are the coefficients of temperature
T (K) expressed in Kelvin and are unique to the constituent
materials. The material properties Pof FGMs are a function of
the material properties and volume fractions of the constituent
material.

Fig. 3. Natural frequencies FG cylindrical shell associated with various
power law exponent for C-F boundary condition.

VI. RESULTS AND DISCUSSION

For simplicity, we actually vary the value of power law
exponent whenever we need to change the volume fraction.
Varying the value of power law exponent N of the FG cylin-
drical shell, natural frequencies are computed for clamped-
free boundary conditions. Results are also computed for pure
stainless steel and pure nickel shells. All these results are
plotted in Fig. 3.

VII. CONCLUSIONS

A study on the free vibration of functionally graded (FG)
cylindrical shell composed of stainless steel and nickel has
been presented. Material properties are graded in the thickness
direction of the shell according to volume fraction power law
distribution. The study is carried out using third order shear
deformation shell theory. The analysis is carried out using
Hamilton’s principle. Studies are carried out for cylindrical
shells with clamped-free (C-F) boundary conditions. The study
showed that in this boundary conditions the frequency first
decreases and then increases as the circumferential wave
number n increases. The results showed that one could easily
vary the natural frequency of the FG cylindrical shell by
varying the volume fraction.
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