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Abstract—In built-up structures, one of the effective ways of 

dissipating unwanted vibration is to exploit the occurrence of slip at 
the interfaces of structural laminates. The present work focuses on 
the dynamic analysis of welded structures. A mathematical 
formulation has been developed for the mechanism of slip damping 
in layered and welded mild steel beams with unequal thickness 
subjected to both periodic and non-periodic forces. It is observed that 
a number of vital parameters such as; thickness ratio, pressure 
distribution characteristics, relative slip and kinematic co-efficient of 
friction at the interfaces, nature of exciting forces, length and 
thickness of the beam specimen govern the damping characteristics of 
these structures. Experimental verification has been carried out to 
validate the analysis and study the effect of these parameters. The 
developed damping model for the structure is found to be in fairly 
good agreement with the measured data. Finally, the results of the 
analysis are discussed and rationalized. 
 

Keywords—Slip damping, tack welded joint, thickness ratio, in-
plane bending stress 

I. INTRODUCTION 

ELDED joints are often used to assemble the fabricated 
structures. These joints have a great potential to reduce 

the vibration levels of these structures, thereby attracting the 
interest of many researchers to understand the mechanism of 
vibration attenuation. Goodman and Klumpp [1] examined the 
energy dissipation due to slip at the interfaces of a laminated 
beam. Studies by researchers such as; Goodman [2], Earles 
[3], Murty [4] have shown that the energy dissipation at the 
joints occur due to interfacial friction which is more than the 
energy loss at the support. In fact following the work of 
Goodman and Klumpp [1], early researchers, such as Masuko 
et al [5] and Nishiwaki et al. [6], studied the damping capacity 
of layered and bolted structures assuming uniform intensity of 
pressure distribution at the interfaces. However, their work is 
limited to the layered and jointed symmetric structures 
vibrating under static conditions. Nanda [7] examined the 
interfacial slip damping in multilayered bolted structures and 
developed a theoretical expression for the pressure distribution 
at the interfaces of a bolted joint by curve fitting the earlier 
data reported by Ziada and Abd [8]. They further studied the 
vibration characteristics of bolted structures and established 
the effects of number of layers, diameter of bolts and use of 
washers on the damping capacity.  
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In their analysis they neglected the effect of in-plane 

bending stresses on the slip considering the damping capacity 
of layered and bolted structures with symmetric cantilever 
beams vibrating under static conditions.  

The effect of non-uniform interface pressure distribution on 
the mechanism of slip damping for layered and jointed beams 
vibrating at static conditions has been examined recently by 
Damisa et al. [9]. Damisa et al. [10] also examined the effect 
of non-uniform interface pressure distribution on the 
mechanism of slip damping for layered beams under dynamic 
loads. Though these researchers considered the in-plane 
distribution of bending stresses but all these analyses are 
limited to the symmetric structures with single interface.  

Although a lot of work has been carried out on the damping 
capacity of bolted structures, little work has been reported on 
the mechanism of damping in layered and welded structures. 
Recently, Singh and Nanda [11] proposed a method to 
evaluate the damping capacity of tack welded structures. They 
established that with the increase in the number of tack welds 
the damping capacity decreases. 

II.   STATIC ANALYSIS 

The two layered and tack welded cantilever beam model 
with overall thickness 2h, width b and length l as shown in Fig. 
1(a) is considered to find out the damping ratio. The loading 
consists of uniformly distributed pressure at the interfaces due 
to contact between two flat bodies, and a concentrated load P 
is applied at the free end, x= l. Each of the two halves of 
thickness h1 and h2 is considered separately with the loading as 
depicted in the Fig. 1(b). The continuity of stress and vertical 
displacement ‘v’  is imposed at the interfaces. At some finite 
value of P, the shear stress at the interfaces will reach the 
critical value for slip xy pτ µ= , where µ and p are the 

kinematic co-efficient friction and interface pressure 
respectively. Additional static force due to excitation will 
produce a relative displacement ( )u x∆ at the interfaces.  

 
Fig. 1 (a) Two layered tack welded cantilever beam model 
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Fig. 1(b) Two halves of the beam depicting load  

A. Interface Pressure Distribution 

Contrary to this, the pressure distribution at the interfaces is 
assumed to be uniform owing to the contact of the upper layer 
over the lower one. Therefore, the relation for uniform 
pressure distribution as given by Johnson [12] and 
Giannakopoulos et al. [13] due to contact of two flat bodies 
has been considered and the same is given by; 

( ) P
p x

b
=                                                                               (1)                                                                       

where P and b are the normal load per unit length and width of 
the beam respectively.  

B. Analysis of Static Response 

The static response is evaluated considering the jointed 
structure fabricated with cantilever beams of unequal 
thickness. The ratio of the two layers considered is given by; 

1

2

h
n

h
=                                                                                    (2)                               

where h1, h2 are the thickness of the upper and lower layers 
respectively and n is a constant. 
Furthermore, 

1 2 2h h h+ =                                                                            (3) 

Solving expressions (2) and (3), thickness of the upper and 
lower layers is given by; 

1
2

1
hnh n= +                                                               (4a) 

2
2

1
hh n= +                                                             (4b) 

 
 The resultant moment at the centroid of each laminate as 
shown in Fig.1 (b) is given by; 

1 1( ) ( )
1

nh
M P l x pb l x

n
µ= − − −

+
                                         (5a) 

2 2( ) ( )
1

h
M P l x pb l x

n
µ= − − −

+
                                       (5b) 

where the subscripts 1 and 2 refer to the upper and lower 

laminates respectively. Moreover, 1P  and 2P  are the static 

forces acting on the laminates 1 and 2 respectively as shown in 
Fig. 1(b).  
Furthermore, 

1 2P P P+ =                                                                             (6) 

Invoking the relation between bending moment and curvature 
we get;  

2

2

d

d

v
M EI

x
= −                                                                        (7) 

where E is the modulus of elasticity 
Putting expression (5) in (7), the following expression is 
obtained; 

( )
2

1
12

1

d 1

1d

v pbnh
P l x

EI nx

µ = − − + 
                                         (8a) 

( )
2

2
22

2

d 1

1d

v pbh
P l x

EI nx

µ = − − + 
                                         (8b) 

where, ( )3
1 1 12I bh , ( )3

2 2 12I bh , 1v and 2v  are the moment of 

inertia and static response of the  laminates 1 and 2 
respectively.       
Integrating expression (8) once we get; 

2
1

1 1
1

d 1

d 1 2 a

v pbnh x
P lx C

x EI n

µ   = − − +  +  
                             (9a) 

2
2

2 1
2

d 1

d 1 2 b

v pbh x
P lx C

x EI n

µ   = − − +  +  
                              (9b) 

where 1 1,a bC C are the integration constant and is evaluated to 

be zero by putting the boundary condition, 

1 2

0 0

d d 0d d
x x

v v
x x

= =

   = =   
   

in the expression (9). 

Further, integration of expression (9) yields; 

( )3 2 3

1 1 23 3

3 1

1 2 62 a

n pbhn lx x
v P C

nEbh n

µ+   = − − +  +  
                   (10a) 

( )3 2 3

2 2 23

3 1

1 2 62 b

n pbh lx x
v P C

nEbh

µ+   = − − +  +  
                    (10b) 

where the integration constants, 2 2 0a bC C= =  

since 1 20 0
0

x x
v v

= =
= = . 

Furthermore, it is assumed that the continuity equation prevails 
as such; 

1 2v v=                                                                                  (11) 

Solving expressions (10) and (11) we get; 

( )3 3

1 3

2 1

1

n P n n n Q
P

n

+ − +
=

+
                                               (12a) 

( )
2 3

1

1

P n n Q
P

n

+ −
=

+
                                      (12b) 

The two dimensional parameters Q and R are defined as; 
Q pbhµ=                                                         (13a) 

Ebh
R

l

3

3=                                                         (13b) 

Using the expressions (10), (12) and (13), the static response 
in terms of “Q” and “R” are finally found to be; 

( )
( ) ( )1 2

1
3

4 1

n x x
v v P Q

l lR n

3 2 3

3

 +    = = − −    +      
                     (14) 
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C. Evaluation of Relative Slip 

The displacement at any axial position x and 1,2 / 2y h= m  

are given by; 

1

1 1
1

0

d1
d

2 d

x

x

h v
u x

E x
σ= −∫                                   (15a) 

2

2 2
2

0

d1
d

2 d

x

x

h v
u x

E x
σ= +∫                                       (15b) 

These displacements are produced by the resultant axial force 

1,2F and moment 1,2M  about the centroid of each half of the 

beam as shown in Fig.1 (b). The parameters1v , 2v  are the 

vertical deflections, E is the modulus of elasticity and 
1 2
,x xσ σ  

are the in-plane bending stresses. It is assumed that the 
continuity equation prevails, i.e., 1 2v v v= =  

From the force equilibrium, the in-plane bending stresses in 
the upper and lower laminates are computed as: 

( ) ( )
1

1

2x

p n
l x

nh

µ
σ

+
= −                              (16a) 

( ) ( )
2

1

2x

p n
l x

h

µ
σ

+
= − −                                   (16b) 

Combining expressions (14), (15) and (16) and simplifying, 
the relative slip displacement at the interfaces is given by; 

  

( )
( )

( )
( )

3 23

2 1 3

2

3 3 13 1

3 14 1

2

n n nn h
u u u P Q

n nn Rl

x x

l l

 + + ++
 ∆ = − = − ×
 ++
 

    −    
     

  (17) 

Slip will occur only if
( )

( )
3 3 1

3 1c

n n n
P P Q

n n

3 2+ + +
> =

+
. 

where, cP  is the critical static load. This is the minimum load 

required to initiate slip. 

III.  DYNAMIC ANALYSIS 

For the forced vibration of a cantilever beam, the static 
analysis has been extended to include distributed inertia forces 
and examine their effect on the mode shape, slip distribution 
and energy dissipation due to slip. The present formulation is 
the extension of static analysis as depicted in the preceding 
section for the beam as shown in Fig. 1. 

A. Analysis of Dynamic response  

The forced vibration of the beam produced by a time-
dependent displacement at the unsupported end has been 
considered such that; 

( )x l
v f t= =                                      (18) 

Following Timoshenko [14], the dynamic displacement is 
composed of two parts; 

I IIv v v= +                                                                            (19) 

where 

( )
( ) ( )

3 2 3

I 3

19 3 1

8 2 21

n x x
v f t

l ln

 +    = −    
   +   

                               (20) 

The term in the bracket represents the static mode function and 
satisfies the end conditions; 

2
I I

I I20
0

d d
0; 0; 0; 0;

d dx x l
x x l

v v
v v

x x= =
= =

= = = =                     (21) 

but not the dynamic equilibrium equation; 
4 2

4 2
0

v v
EI A

x t
ρ∂ ∂+ =

∂ ∂
                                                           (22) 

where, EI and ρ are the flexural rigidity and density of the 
beam, respectively. 

The displacement Iv  produces the dynamic loads as given by; 

( )
( ) ( )

3 2 3

3

19 3 1

8 2 21

n x x
A f t

l ln
ρ
 +    − −    
   +   

&&                              (23) 

where A is the cross-sectional area of the beam.  

Moreover, the displacement (IIv ) representing vibrations 

produced by the force function (23) is expressed as;  

( ) ( )II i i
i

v t X xϕ=∑                                                             (24) 

where ( )iX x and ( )i tϕ are the modal and time-dependent 

functions, respectively. 

IIv  must satisfy the end conditions; 
2

II
II II20

0

d d
0; 0; 0; 0;

d d
II

x x l
x x l

v v
v v

x x= =
= =

= = = =                  (25) 

( )iX x are the solutions of the expression (22) and satisfies the 

end condition as given in (25). Thus we get; 

( ) ( )sinh sin sin sinhi i i i iX k l k l x k l k l x= − − −                    (26)      

where ik  are the roots of the following expression; 

tanh tani ik l k l=                                                                   (27) 

The total displacement is then given by; 

( )
( ) ( ) ( ) ( )

3 2 3

3

19 3 1

8 2 21
i i

i

n x x
v f t t X x

l ln
ϕ

 +    = − +    
   +   

∑       (28) 

Applying the principle of virtual work, Timoshenko [14] has 
shown that the time-dependent functions ( )i tϕ  must satisfy 

the differential equation 

( )
4
i

i i i

EIk
b f t

A
ϕ ϕ

ρ
+ = − &&&&                                                        (29) 

where the dot superscripts denote differentiation with respect 

to time. The coefficients ib are obtained by expanding the 

force function (23) in a series of the normal functions, iX . 

Thus, 

( )
( ) ( ) ( )

3 2 3

3

19 3 1

8 2 21
i i

i

n x x
A f t A f t b X

l ln
ρ ρ

 +    − − = −    +      
∑&& &&      (30) 

and the coefficients ib are obtained from the following 

expression; 
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( )
( ) { }

3 2 3

3
0

2

0

19 3 1
d

8 2 21

d

l

i

i l

i

n x x
X x

l ln
b

X x

 +    −    
   +   

=
∫

∫
                       (31)  

 

Integrating the expression (31) ib is finally found to be; 

 

( )
( ) ( )

3

3

9 1

4 1 sinh sin
i

i i i

n
b

n k l k l k l

+
=

+ −
                                     (32)  

 
The general solution of expression (29) is given by; 
 

( ) ( ) ( )
0

cos sin sin d
t

i
i i i i i i

i

b
t A p t B p t f t p t

p
ϕ τ τ= + − −∫ &&     (33)  

where 
1 2

2
i i

EI
p k

Aρ
 =  
 

 

Constants Ai and Bi are evaluated from the initial conditions; 

( ) ( )0 ,0v U x=                                                                   (34a) 

( ) ( )0 ,0v V x=&                                                                   (34b)  

 
Putting expression (28) in (34), U and V are evaluated as; 
 

( )
( ) ( ) { }

3 2 3

3

19 3 1
0

8 2 21
i i

i

n x x
U f X A

l ln

 +    = − +    
   +   

∑         (35a) 

( )
( ) ( ) { }

3 2 3

3

19 3 1
0

8 2 21
i i i

i

n x x
V f X B p

l ln

 +    = − +    
   +   

∑&      (35b) 

Moreover; 

( )
( )

3 2 3

3

19 3 1

8 2 21
i i

i

n x x
b X

l ln

 +    − =    
   +   

∑                               (36) 

Putting expression (36) in (35) and simplifying we get; 

( ) ( ){ },0 0i i i
i

U x X A b f= +∑                                            (37a) 

( ) ( ){ },0 0i i i i
i

V x X B p b f= +∑ &                                        (37b) 

Putting the initial conditions U=V=0, the constants Ai and Bi 
are found as; 

( )0i iA b f= −                                                                     (38a) 

( )0i
i

i

b
B f

p
= − &                                                                   (38b) 

Substitution of expressions (33) and (38) in (28) yields; 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )

3 2 3

3

0

19 3 1
, 0 cos

8 2 21

0 sin sin d

i i i
i

t
i i

i i i i
i ii i

n x x
v x t f t f b X p t

l ln

b b
f X p t X f p t

p p
τ τ τ

 +    = − −    +      

− − −

∑

∑ ∑ ∫& &&

 (39)                                   

Integrating and simplifying the expression (39), the transverse 
deflection is finally found to be; 

( ) ( )
( ) ( )

( ) ( ) ( )

3 2 3

3

0

19 3 1
,

8 2 21

sin d
t

i i i i i i
i i

n x x
v x t f t

l ln

b X f t b X p f p tτ τ τ

 +    = −    
   +   

− + −∑ ∑ ∫

                (40) 

B. Evaluation of Dynamic Slip 

The relative slip at the interfaces under dynamic condition is 
evaluated by combining the expressions (15), (16) and (40). 
The relative slip at the interfaces is given by; 

( )
( )

3 2 2

2 1 23

9 1 2 d

d8 1
x

n pl x x v
u u u h

l xln Eh

µ  +
∆ = − = − − + 

+  
            (41) 

Utilizing the expression for mode shape as given by (40) in 
(41), the relative slip is modified as; 

( )
( ) ( )

( ) ( )

( ) ( ) ( )

3 2 2

23

0

19 3 2

8 21

sinh cos sin cosh

sin d

x

i i i i i i
i

t

i i

n pl h x x
u f t

Eh l l ln

h b k k l k l x k l k l x

f t p f p t

µ

τ τ τ

   +
∆ = − + −  

+    

+ − − −  

 
× − − 
  

∑

∫

       (42) 

C. Analysis of Energy Dissipated 

The energy is dissipated due to friction and relative dynamic 
slip at the interfaces. For completely reversed loading, the 
product of the shear force, pµ  and the relative displacement, 

u∆  is integrated over the length of the beam which is found to 
be equal to one-fourth of the energy dissipation in a complete 
cycle. 
Thus, energy dissipation per cycle as established by Goodman 
and Klumpp (1956) is given by;  

( ) ( )2 1

0 0

4 d 4 d
l l

loss xyE b u x x pb u u xτ µ= ∆ = −∫ ∫                      (43) 

where, 1u and 2u are the displacements in the x-direction of 

points on the adjacent faces of the upper and lower half beam 
respectively.  
Substituting the expression (42) in (43) and integrating, the 
energy dissipation per cycle is given by; 

( ) ( )2 2

2

1
4

6loss

n pl
E pbh f t

n Eh

µµ
 +
 = −
  

                                (44) 

The expression (44) is modified putting two dimensional 
parameters Q and R as given by expressions {13(a) and 13 
(b)} and the same is given as; 

( ) ( )2
1

4
6loss

n Q
E Q f t

n R

 +
 = −
 
 

                                           (45) 

D. Evaluation of Loss Factor 

In vibration problems, it is most convenient to express the 
dissipative properties of the system in terms of non-
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dimensional quantities such as the damping ratio ψ  and loss 

factor sη , defined by; 

loss

ne

E

E
ψ =                                                                            (46a) 

2 2
loss

s
ne

E

E

ψη
π π

= =                                                            (46b) 

where, neE  is the maximum strain energy stored in the system. 

The maximum strain energy stored in the system in terms of 
dynamic deflection at the tip of the beam is given by; 

( ) ( )2 21

2neE k f t R f t= =                                                  (47) 

where 
3

3EI
k

l

 = 
 

 is the bending stiffness 

Putting expressions (45) and (47) in expression 46 (a) and 
simplifying, the damping ratio in terms of dynamic tip 
displacement is given by; 

( )
( ) ( )2

2

14

6

nQ Q
f t

n RR f t
ψ

 +
 = −
     

                                    (48) 

Putting expression (48) in expression 46(b) and simplifying, 
the loss factor in terms of dynamic tip displacement is given 
as; 

( )
( ) ( )2

2

12

6s

nQ Q
f t

n RR f t
η

π

 +
 = −
     

                                (49) 

This result clearly indicates that the value for expression (49) 
cannot be fully determined until the forcing time dependent 
displacement function f (t) is fully specified. Consequently, we 
limit our analysis to the following case namely: 
where ω is the excitation frequency 

(a) ( ) ( )0 0f t F H t t= −                                                (50a) 

where H(t) is the Heaviside function and F0 is the 
amplitude 

(b) ( ) i
0 e tf t F ω=                         (50b) 

 
The dynamic response, slip and the loss factor have been 
evaluated for the above cases of ( )f t  putting the expressions 

{50(a) and 50(b)} in (40), (42) and (49). 

IV. EXPERIMENTAL SETUP AND EXPERIMENTS 

An experimental set-up as shown in Fig. 2 has been 
fabricated to conduct the experiments. The specimens are 
prepared from the stock of mild steel flats by tack welding two 
layers of various thickness and cantilever length. The details of 
the mild steel specimen used for experimentation are given in 
Table 1. The cantilever specimens are excited transversally by 
a time dependent displacement at the free end with the help of 
vibration generator. The input excitation and output vibration 
are sensed with vibration pick-ups and the corresponding 
signal is fed to a digital storage oscilloscope which is 
connected to the computer with vibration analyzer software i. 
e., Lab View of National Instruments limited. 
 

 
Fig. 2 Experimental setup 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The frequency response has been generated for the first four 

modes of the vibration. The frequency response curves at 
different loadings are shown in Figs. 3 and 4. The 
experimental damping ratio is then evaluated using 
experimental FRF curves. 
 

 
Fig. 3 FRF plot at harmonic loading for jointed and welded cantilever 

beams of dimensions=600.6×40.2×3 mm3 

TABLE I 
DETAILS OF MILD STEEL SPECIMENS 

Thickness 
of the 

specimen 
(h1+h2) 
(mm) 

Width of 
the 

specimen 
(mm) 

Cantilever 
length 
(mm) 

 

Type of 
welding 

(6+6) 
(8+4) 
(9+3) 
(10+2) 

40.2 
40.2 
40.2 
40.2 

520.6 
 

Tack 

Welding 

(6+6) 
(8+4) 
(9+3) 
(10+2) 

40.2 
40.2 
40.2 
40.2 

560.4 
 

Tack 

Welding 

(6+6) 
(8+4) 
(9+3) 
(10+2) 

40.2 
40.2 
40.2 
40.2 

600.6 
Tack 

Welding 
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Fig. 4 FRF plot at Heaviside loading for jointed and welded 

cantilever beams of dimensions=600.6×40.2×3 mm3 

V.  RESULTS AND DISCUSSION 

The loss factor for two layered and tack welded mild steel 
specimens of unequal thickness have been found out 
numerically using the expression (49). From this analysis the 
following inferences have been drawn as detailed below. 
Energy loss in the welded structures with various thickness 
ratios for a particular configuration has been plotted in the Fig. 
5.  

 
Fig. 5 Variation of Energy loss with thickness ratio for welded 

cantilever beams 
 

All other parameters remaining constant, with thickness 
ratio greater than one, initiation of slip requires a larger 
displacement and the energy loss reduces compared to the 
jointed beam of equal thickness. In other words, energy 
dissipation is maximized by having the slip interface at the 
centroid of the total beam cross-section. The variation of 
critical load and amplitude has been plotted in Fig. 6.  

 
Fig. 6(a) Variation of critical load with thickness ratio for welded 

cantilever beams 

 
Fig. 6(b) Variation of critical amplitude with thickness ratio for 

welded cantilever beams 
 

 
Fig. 7 Surface plot of normalized slip with axial position and 

thickness ratio 

From the plots it is evident that the critical load and 
amplitude increases with the increase in thickness ratio. The 
variation of relative slip with an axial distance from the fixed 
end has been plotted in Fig. 7. From the figure it is quite 
evident that the relative slip increases with the distance from 
the fixed end. Moreover, the relative slip is maximum at 
thickness ratio of one and decreases as the ratio is increased. 
In welded beams of equal thickness the slip surface is at the 
centroid of the total beam cross-section. 

It is evident from the expression (49) that for the beam with 
the same total thickness, the loss coefficient is increased by 
having laminates of equal thickness. However, for jointed 
beam with laminates of unequal thickness, the onset of slip is 
delayed due to higher critical load, as compared to that of the 
laminates of equal thickness as evident from the expressions 
(17) and (42). The reason being, slip interface is not at the 
centroid of the beam in case of layered and welded non-
symmetric beams thereby raising the critical load.  

The variation of energy loss with the initial amplitude of 
excitation for the layered and jointed beams of symmetric and 
non-symmetric beams has been plotted in Fig. 8. From the 
figure it is apparent that the energy dissipation increases with 
the increase in initial amplitude of excitation. From the 
expression (45) it is deduced that the energy loss due to 
friction is directly proportional to the initial amplitude of 
excitation which establishes that energy dissipation is 
enhanced with increase in initial amplitude of excitation. 
Further, the relative slip at the interfaces is increased due to 
increase in initial amplitude of excitation as shown in 
expressions (17) and (42), thereby enhancing the energy loss 
due to friction.  
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Fig. 8 Surface plot of normalized energy loss with amplitude and 

thickness ratio 
 

The dynamic response of the two layered welded beams 
with various thickness ratios have been shown in the Figs. 9 
and 10. From the figure it is evident that the dynamic response 
decreases with the increase in the thickness ratio. 
 

 
Fig. 9 Surface plot of dynamic response with axial position and 

thickness ratio greater than one 
 

 
Fig. 10 Surface plot of dynamic response with axial position and 

thickness ratio less than one 

The variation of relative slip with an axial distance from the 
fixed end and normalized time has been plotted in Figs. 11 and 
12. From the figures it is quite evident that the relative slip 
increases with the distance from the fixed end and is maximum 
at the free end.  
 

 
Fig. 11 Normalized slip profile at Heaviside loading for jointed and 

welded cantilever beams 

The variation of dynamic response with an axial distance 
from the fixed end and normalized time has been plotted in 
Figs. 13 and 14. From the figures it is inferred that the 
dynamic response increases with the distance from the fixed 
end and is maximum at the unsupported end. 
 

 
Fig. 12 Normalized slip profile at harmonic loading for jointed and 

welded cantilever beams 

 
Fig. 13 Normalized dynamic response profile at Heaviside loading 

for welded cantilever beams 
 

 

Fig. 14 Normalized dynamic response profile at harmonic loading for 
welded cantilever beams 

 
The variation of relative slip with respect to axial distance 

from the fixed end versus frequency ratio for Heaviside and 
harmonic loading have been plotted in Figs. 15 and 16, 
respectively. From the figures it is concluded that the relative 
slip increases with the distance from the fixed end and is 
maximum at the unsupported end. Moreover the relative slip 
increases in the pre-resonance region with the increasing 
frequency and is maximum at the frequency ratio of one, i. e., 
at the resonant frequency. The variation of dynamic response 
with respect to axial distance from the fixed end versus 
frequency ratio for Heaviside and harmonic loading have been 
plotted in Figs. 17 and 18 respectively. It is evident that the 
dynamic response increases with the distance from the fixed 
end and is maximum at the unsupported end. Moreover the 
dynamic response is maximum at the resonant frequency, i. e., 
at the frequency ratio of one. 
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Fig. 15 Normalized slip profile at Heaviside loading with respect to 

the frequency ratio 

 
Fig. 16 Normalized slip profile at harmonic loading with respect to 

the frequency ratio 

 
Fig. 17 Normalized dynamic response at Heaviside loading with 

respect to the frequency ratio 
 

 
Fig. 18 Normalized dynamic response at harmonic loading with 

respect to the frequency ratio 

 

The theoretical loss factor has been evaluated for various 
configurations and vibration conditions using the expression 
(49) and plotted along with the corresponding experimental 
ones as solid (——) and dotted lines (------) as shown in Figs. 
19 to 21 respectively for comparison. It is observed that both 
the curves are in good agreement with a maximum variation of 
9.8% which authenticates the theoretical analysis. Fig. 19 
shows that the loss factor decreases with the increase in the 
initial amplitude of vibration at the free end of the beam model 
although increase in the amplitude of vibration raises energy 

loss due to friction. The strain energy introduced into the 
system is proportional to square of the amplitude as given in 
expression (47). However, the increase in amplitude of 
excitation increases the input strain energy at a higher rate 
compared to the energy loss due to friction which is linearly 
proportional to the initial amplitude as given in expression 
(45), thereby reducing the damping capacity.    

 
Fig. 19 Variation of loss factor with amplitude for jointed and welded 

cantilever beams of dimensions=600.6×40.2×6 mm3 
 

From the Fig. 20, it is concluded that the damping capacity 
decreases with the increase in thickness. From the expression 
(47), it is evident that the strain energy introduced in to the 
system is enhanced with the increase in thickness. Expressions 
(17) and (42) reveal that the increase in thickness increases the 
relative slip thereby raising the energy loss. Although the 
energy loss is enhanced with the increase in thickness, but the 
damping capacity is reduced as the dissipation of energy is at a 
slower rate compared to that of the input strain energy.  
 

 
Fig. 20 Variation of loss factor with thickness for jointed and welded 

cantilever beams of dimensions=600.6×40.2 mm2 and 
amplitude=0.1mm 

 
Damping capacity of the layered and welded structures 

increases with the increase in length as shown in Fig. 21. With 
the increase in length, the interface area is increased resulting 
in greater dissipation of the energy due to friction. 
Furthermore, with increase in length of the jointed beam, strain 
energy introduced into the system is reduced as evident from 
the expression (47). Hence, the overall effect is an increase in 
the damping capacity of the system. 
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Fig. 21 Variation of loss factor with length for jointed and welded 

cantilever beams of dimensions=40.2×6 mm2 and amplitude=0.1mm 
 

VI.  CONCLUSION 

A mathematical model for the investigation of the 
mechanism of slip damping in layered and welded structures 
with unequal thickness, subjected to dynamic conditions, has 
been developed. In the present analysis, explicit solutions has 
been found out for the dynamic response, slip, dissipated 
energy and loss factor for the welded non-symmetric cantilever 
beams under both periodic and non-periodic forcing functions 
of the Heaviside and harmonic type. Proposed mathematical 
model for damping is validated by conducting experiments. A 
set of measurements have been taken, which served as a 
qualitative, experimental validation of the procedure. From the 
analysis, it is inferred that the damping capacity of layered and 
welded structures is substantially enhanced by fabricating the 
structures with symmetric beams. It is also observed that onset 
of slip is delayed in the structures fabricated with beams of 
unequal thickness. Energy dissipation is maximized by having 
the slip interface at the centroid of the total beam cross-section 
which is the case of jointed beams of equal thickness. Further, 
it is also deduced that the pressure distribution characteristics, 
relative slip and kinematic co-efficient of friction at the 
interfaces, length, thickness, and dynamic amplitude of 
excitation are the vital parameters influencing the damping 
capacity of fabricated structures with unequal thickness. The 
present analysis will help the designers to model the 
complicated realistic structures in which slip damping is 
predominant. 
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