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Abstract—Raman spectroscopy is currently a part of the 

instrumentation suite of the ESA ExoMars mission for the remote 
detection of life signatures in the Martian surface and subsurface. 
Terrestrial analogues of Martian sites have been identified and the 
biogeological modifications incurred as a result of extremophilic 
activity have been studied. Analytical instrumentation protocols for 
the unequivocal detection of biomarkers in suitable geological 
matrices are critical for future unmanned explorations, including the 
forthcoming ESA ExoMars mission to search for life on Mars 
scheduled for 2018 and Raman spectroscopy is currently a part of the 
Pasteur instrumentation suite of this mission. Here, Raman 
spectroscopy using 785nm excitation was evaluated for determining 
various concentrations of beta-carotene in admixture with 
polyaromatic hydrocarbons and usnic acid have been investigated by 
Raman microspectrometry to determine the lowest levels detectable 
in simulation of their potential identification remotely in 
geobiological conditions in Martian scenarios. Information from this 
study will be important for the development of a miniaturized Raman 
instrument for targetting Martian sites where the biosignatures of 
relict or extant life could remain in the geological record. 

 
Keywords—Raman spectroscopy, Mars-analog, Beta-carotene, 

PAHs. 

I. INTRODUCTION 
HE quest for evidence of life, both extant and extinct, 
especially on Mars, is a basic goal of current space 

exploration. In the case of Mars, the detection of extant or 
recent life and the search for chemical tracers left by past life 
have been summarized in an excellent report [1]. In addition to 
the geosignatures (e.g., morphological features, erosion 
consistent with aquifer processes) life can leave traces of 
biosignatures (e.g., organic macromolecules) that can be 
attributed to previous or current biological activity [2], 
allowing us to detect its past and present occurrence. On 
Earth, molecular biomarkers derive from biochemical 
precursors through reduction or oxidation processes and 
generally include lipids and pigments, their derivatives and 
degradation products [3], [4]. Within the model payload of the 
forthcoming instruments currently being developed by ESA 
and NASA for future missions on Mars, Raman spectroscopy 
is considered as a fundamental instrument for characterizing 
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mineralogical and organic material (separately or in 
combination with LIBS or fluorescence techniques).  

Therefore, it is necessary to perform a series of Earth-based 
analyses on Martian-analogues, to evaluate the possibilities of 
Raman spectroscopy in this context and subsequently to 
facilitate future in-situ measurements. Raman spectroscopy 
has hitherto been proved to be a useful method for 
characterizing organic minerals derived from biological 
activity in the geological record [5]-[8].  

Studies of terrestrial environments [9] show that in cases 
where the external conditions do not allow for the existence of 
surface growths, rocks become the refuge for microorganisms 
that need additional protection from hostile environmental 
conditions. Within the Martian context, any organic matter 
trapped as intracrystalline inclusions within sulfates, for 
example would be expected to be resistant to the oxidizing 
conditions present on the surface of Mars [9].  

Beta-carotene is one of the most widespread natural 
molecules, exhibiting several biological functions in a variety 
of organisms from bacteria and plants. Beta-carotene has two 
strong Raman bands at 1515 and 1157cm−1 due to in-phase 
ν1(C=C) and ν2(C–C) stretching vibrations. A feature of 
medium intensity also occurs at 1008cm−1, corresponding to 
the in-plane rocking modes of the (C-CH3) group in 
phenylalanine (Fig. 1) [10], [11]. Marshall et al. [12] have 
reported the identification of carotenoids in halophilic archaea 
by resonance Raman spectroscopy using the 514.5nm 
excitation wavelength. This excitation wavelength has proved 
to be useful when analyzing carotenoids due to its coincidence 
with an electronic transition in carotenoids resulting in a 
resonance Raman effect, thus enhancing significantly the 
intensity of the Raman signal for example [10]-[12]. However, 
considering the need for other organic biomolecular species to 
be analyzed within astrobiological missions, other 
wavelengths must be considered as possible excitation 
sources. 

In this paper, Raman micro-spectroscopy was used as a 
non-destructive method of determining the presence of 
chemically pure beta-carotene in experimentally prepared 
mixtures with powdered usnic acid, phenanthrene and 
triphenylene. The aim of this work is to evaluate the 
discriminatory ability of the technique and to determine the 
lowest proportion of beta-carotene that is still possible to 
detect in the selected compounds—thereby simulating the 
analysis of beta-carotene incorporated inside organic acids and 
polyaromatic hydrocarbons (PAHs) as residues from extinct 
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TABLE I 
 RAMAN BANDS POSITIONS (IN WAVENUMBERS, CM-1) AND CORRESPONDING ASSIGNMENT OF BETA-CAROTENE, USNIC ACID, PHENANTHRENE AND 

TRIPHENYLENE 
Beta-carotene Usnic acid Phenanthrene Triphenylene 

1513 
in-phase ν (C=C) 

1693 
ν(C=O) conjugated cyclic ketone 

3071  
CH stretching 

1615  
C-C stretching 

1156 
ν (C-C) Stretching vibrations 

1629  
ν(C=O)aromatic ketone 

3055  
CH stretching 

1604  
C-C stretching 

1008 
in-plane rocking modes of (C-CH3) 

1608  
Quadrant ring stretch 

1622 
 C=C stretching vibration 

1458 
 C-C stretching 

 1322  
Ring stretch 

1523  
C-C stretching 

1340 
 C-C stretching 

 1289  
ν (COC) as aryl alkyl ether 

1440  
C-C stretching, HCC bending 

1228  
C-H in plane bending 

  1349 
 C-C stretching, HCC bending 

1162 

  1245 
 HCC bending 

1061  
C-H in plane bending 

  1200 
 C-C stretching, HCC bending 

698  
C-H out of plane bending 

  1168 
C-C stretching 

418 
 C-C-C out of plane bending 

  1036  
C-C stretching, HCC bending 

 

  710 
 HCCC out of plane bending 

 

  547  
CCC bending 

 

  410  
CCC bending 

 

 
C. Beta-Carotene in Usnic Acid 
The Raman spectra of beta-carotene in usnic acid at 

different concentrations are shown in Fig. 2. At the 
concentration level of 0.25mg kg-1, only two weak Raman 
bands at 1513 and 1156cm-1 assigned to the in-phase ν (C=C) 
and ν (C-C) stretching vibrations, respectively, are seen in the 
spectra when accumulating 5 scans of 10s each , using a 5x 
objective lens, resulting in a laser ″footprint″ of approximately 
10 µm diameter. (Table II).  

Usnic acid features at 1322 and 1289cm-1 which are 
assigned to a ring stretch and a ν (COC) of an aryl alkyl ether, 
respectively, clearly appear in the spectra at a concentration 
level of beta-carotene of 1mg kg-1, as seen in Fig. 3, compared 
with the usnic acid features. 
 

TABLE II  
I/Σ RATIO OF BETA-CAROTENE BANDS AT VARIOUS CONCENTRATIONS IN 

USNIC ACID, PHENANTHRENE AND TRIPHENYLENE MIXTURES 
mg kg-1 1513 cm-1 1156 cm-1 1008 cm-1  Organic compounds 

0.25 13.84 46.09 2.23 Usnic acid 
0.50 26.93 60.72 47.78  
01 56.42 95.33 71.60  
05 159.69 180.90 78.75  
10 164.72 211.69 106.81  

0.25 13.44 17.11 2.58 Phenanthrene 
0.50 41.63 58.02 19.69  
01 167.30 187.44 69.36  
05 196.61 245.44 107.47  
10 217.97 249.91 117.75  

0.25 15.59 35.25 2.01 Triphenylene 
0.50 29.17 49.34 1843  
01 61.40 85.65 28.75  
05 213.96 244.28 103.03  
10 218.25 249.59 107.38  

Limit of detection at 99% confidence assgned to I/σ >3 [25] 
 

D. Beta-Carotene in Phenanthrene 
The Raman spectra of beta-carotene in phenanthrene show 

the beta-carotene Raman band at 1513cm-1 assigned to the in-
phase ν (C=C) which appeared as a doublet bands at 0. 50mg 
kg-1 and as a shoulder at 0.25mg kg-1 with the phenanthrene 
Raman band at 1523cm-1, also assigned to C-C stretching. 
Furthermore, the beta-carotene Raman band at 1156cm-1 

assigned to the ν (C-C) stretching vibration was observed at 
0.50mg kg-1 and appeared as a triplet band at 0.25mg kg-1 
concentration. Also, the beta-carotene Raman band, at 
1008cm-1 which is assigned to the in-plane rocking modes of 
(C-CH3) was observed in the spectra at the concentration level 
equal to or higher than 0.50mg kg-1; however, at the 
concentration level of 0.25mg kg-1 this band was not observed 
(Fig. 4 and Table II). 

E. Beta-Carotene in Triphenylene 
Measurements using the 785nm excitation wavelength 

allowed the detection of three characteristic bands of beta-
carotene (1513, 1156 and 1008cm-1) corresponding to the in-
phase ν (C=C) and ν (C-C) stretching vibrations and in-plane 
rocking modes of (C-CH3), respectively) at a concentration 
level equal to or higher than 0.50mg kg-1 (Fig. 4). Only two 
weak Raman bands of beta-carotene are seen in the spectra at 
the concentration level of 0.25mg kg-1 (Table II). Therefore, 
the beta-carotene Raman band at 1156cm-1 assigned to the ν 
(C-C) stretching vibration is seen as a doublet at 0.25 and 
0.50mg kg-1 concentration levels along with the triphenylene 
Raman band at 1162cm-1 as shown in Fig. 5. 
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