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Institutt for fysikk, NTNU, Trondheim Norway
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I. INTRODUCTION

IN a recent paper[1] it was demonstrated that it is possible to
solve some eigenvalue problems of the Schrödinger type to

almost arbitrary high precision. The cases presented explicitly
were (i) the ground state eigenenergy of the anharmonic
oscillator,

−ψ′′ + x4 ψ = ε ψ, (1)

which was found to an accuracy of more than 1 000 000
decimal digits, (ii) the eigenstate number 50 000 of the same
equation where the eigenenergy was found to an accuracy of
more than 50 000 decimal digits, and (iii) the lowest even and
odd parity states of the double-well potential,

−s2 ψ′′
± + (x2 − 1)2 ψ± = ε± ψ±, (2)

where the two eigenenergies were found to an accuracy of
more than 30 000 decimal digits for the case s = 1/50 000.

In the latter case the two eigenenergies are degenerate to
almost 29 000 decimals, with the difference directly com-
putable by the WKB method. The 10th order WKB expansion
given in [2] provide an accuracy of about 48 decimals for the
difference, all of which agrees with the difference between the
two numerical calculated eigenenergies.

Also the eigenenergies of the highly excited states of
equation (1) can be calculated by the WKB method. The 12th

order WKB expansion given in [3] provide an accuracy of
about 67 decimals, all of which agrees with the numerical
result.

It is certainly difficult to find physical systems where one
need to know eigenenergies to tens of thousands of decimals
or more. However, if one need to compute the wavefunction
very accurately to very high values of x (to f.i. evaluate
matrix elements) the value depends extremely sensitively on
the eigenvalue parameter. Thus, in our opinion, algorithms for
very-high-precision evaluation of eigenvalues may be useful in
combination with routines for very-high-precision evaluation
of matrix elements and normalization integrals.

In this paper we demonstrate that the latter can be achieved
very simply, with the number of eigenfunction evaluations
growing only linearly with the desired precision P in dec-
imal digits. Each eigenfunction evaluation will in turn re-
quire a number of high-precision multiplications which grows
linearly with P , and each such multiplication require a
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CPU time which scales asymptotically between P 1.6 and
P log P log log P (depending on which high-precision mul-
tiplication algorithm is used). Thus, the total time to evaluate
one normalization integral to P decimals precision can be
expected to increase somewhat faster than P 3. However, since
the eigenfunction evaluations are independent they can be run
in parallel.

The rest of this paper is organized as follows. In section II
we make some general remarks on numerical integration
rules. We base our analysis on the Euler-Maclaurin summation
formula and the Poisson resummation formula. Our conclusion
is that the trapezoidal rule is not only the simplest one but also
the best one. For integrals over finite intervals some there are
endpoint corrections which should be considered separately;
these corrections vanish for our normalization integrals. In
section III we consider some simple example cases similar
to our wavefunction normalization integrals. For an infinite
(in principle) integration range and a fixed number M of
integration steps one must strive for a balance between the
error ε(h) due to using a finite stepsize h, and the error ε(xmax)
due to covering only a finite integration range. These errors can
be estimated by respectively analysing the Fourier transform
f̃(p) of the integrand f(x) as |p| → ∞ (by the method of
steepest descent), and the asymptotic behaviour of f(x) as
|x| → ∞. It appears that both analyses can be extended
to wavefunction normalization integrals by use of the WKB
approximation. This extension is done in section IV.

II. REMARKS ON INTEGRATION FORMULAE

There is no scarcity of numerical integration formulae in
the literature[4]. Standard choices are rules for I {f} ≡∫ b

a
dx f(x) which reproduces integrals of polynomials below

a certain order exactly,

I {f} ≈ 1
2

(f0 + f1) h ≡ T (h),

I {f} ≈ 1
3

(f0 + 4f1 + f2) h ≡ S(h),
(3)

I {f} ≈ 3
8

(f0 + 3f1 + 3f2 + f3) h ≡ S3/8(h),

I {f} ≈ 2
45

(7f0 + 32f1 + 12f2 + 32f3 + 7f4)h ≡ B(h),

with h = (b − a)/M and fm = f(a + mh) when there
is M + 1 terms in the integration rule. These are known
respectively as the trapezoidal, Simpson’s, Simpson’s 3

8 , and
Boole’s rule. They are automatically exact for polynomials
which are antisymmetric about the midpoint x̄ = (b − a)/2.
The M independent coefficients are chosen to give exact
results for all symmetric (about x̄) polynomials of order below
2M . However, as M increases the weight coefficients develop
in a suspicious way. To integrate functions over large intervals
to very high precision it seems dubious to extend the procedure
above.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:4, 2011

683

A. Extended Simpson’s rule

An alternative way to handle integration over large intervals
is to divide them into many smaller ones, and apply one of the
rules above to each of the subintervals. We denote this by a
bar over the rule, T (h) → T̄ (h) etc. A rather common choice
is to extend Simpson’s rule, leading to the formula

∫ b

a

dx f(x) ≈ S̄(h) ≡ 1
3

(f0 + 4f1 + 2f2 + · · ·
(4)

+2fM−2 + 4fM−1 + fM ) h,

which looks curious to any member of an equal society. What
is wrong with half of the points? Are they of the wrong
gender? Which mysterious force of numerical error analysis
leads to this spontaneous breakdown of translation invariance?
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Fig. 1 Comparison of accuracy of the extended trapezoidal and
Simpson’s rules for some integrands with very smooth boundary
behaviour.

In our opinion only T̄ (h) is a logically sensible procedure.
We claim that this is also the best procedure. To support and
exemplify this claim we have evaluated the integrals below:

In =
∫ 1

0

dx
(
1 − x2

)n
, (5)

J∞ =
∫ 1

0

dx

[
1 − tanh

(
2x − 1

1 − (2x − 1)2

)]
, (6)

by the T̄ (h) and S̄(h) = 4
3 T̄ (h)− 1

3 T̄ (2h) rules. The relative
errors of the two methods as function of discretization length h
are shown in figure 1. The result is as expected that S̄ behave
as well as T̄ with twice the discretization length h.

B. Euler-Maclaurin summation formula

The examples in figure 1 are untypical in the sense that the
integrands are very smooth at the endpoints (which is typical
for the normalization integrals we are primarily interested in).
One may use the Euler-Maclaurin summation formula to see
which quantity is actually computed by the various integration

rules"
1

2
f0 +

M−1X
m=1

fm +
1

2
fM

#
h =

Z b

a
dx f(x) +

∞X
k=1

B2k

(2k)!
Δ(2k−1) + · · ·

=

Z b

a
dx f(x) +

Δ(1)

12
− Δ(3)

720
+

Δ(5)

30240
− Δ(7)

1209600
+ · · · , (7)

where Δ(k) =
[
f (k)(b) − f (k)(a)

]
hk+1, and the ellipsis in

the first line denote “non-perturbative” terms depending on
how f(x) varies in the full integration range. With S̄(h) =
4
3 T̄ (h)− 1

3 T̄ (2h) one finds the corresponding quantity for the
extended Simpson’s rule:

S̄ {f} =
∫ b

a

dxf(x) +
1
3

∞∑
k=1

(
4 − 22k

) B2k

(2k)!
Δ(2k−1) + · · · .

(8)

I.e., the Δ(1)-coefficient has been eliminated at the cost of
increasing all the remaining coefficients1.

A natural way to eliminate the Δ(1)-coefficient would be
to calculate f ′ explicitly at the endpoints, or use a numerical
approximations like

f ′(x) =
f(x + δ) − f(x − δ)

2δ
− 1

6
f (3)(x) δ3 + . . . ,

f ′(x) = −3f(x) − 4f(x + δ) + f(x + 2δ)

2δ
+

1

3
f (3)(x) δ3 + . . . ,

f ′(x) =
3f(x) − 4f(x − δ) + f(x − 2δ)

2δ
+

1

3
f (3)(x) δ3 + . . . ,

for sufficiently small δ. One should take δ somewhat smaller
than h. The modified trapezoidal rule described in [5] is
generally worse than the extended Simpson’s rule because of
an inaccurate approximation of f ′. However, there are few
reasons to use the same discretization length for computing
derivatives at the endpoints as for computing the bulk contri-
bution to the integral. To avoid introduction of significant new
errors it is sufficient to choose δ < h/2 in the first formula.
By choosing δ = h/

√
20 in the last two one also eliminates

the Δ(3)-term in equation (7).

C. Poisson resummation formula
There exist expressions for the “non-perturbative” terms in

equation (7), but we find the Poisson resummation formula
more clarifying: Assume f(x) is an entire, integrable function,
with Fourier transform

f̃(p) =
∫ ∞

−∞
dx f(x) eipx. (9)

Then one version of the Poisson resummation formula reads
∞∑

m=−∞
h f(mh) =

∞∑
k=−∞

f̃(
2πk

h
). (10)

This can be used to estimate the accuracy of the numerical
integration formula∫ ∞

−∞
dx f(x) =

∞∑
m=−∞

h f(mh) −
∑
k �=0

f̃(
2πk

h
). (11)

When f(x) is an entire function its Fourier transform f̃(p)
will vanish faster that any inverse power of p as p → ∞. This
means that the numerical approximation to the (infinite range)

1Note that the error terms given for the “extended” rules in reference [4]
are in disagreement with our results.
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integral of an entire function will converge very fast towards
the exact value as h → 0.

Integrals of f(x) over a finite range [a, b] can be viewed
as integrals of g(x) ≡ θ(b − x) θ(x − a) f(x) over an
infinite range. But g(x) will usually be discontinuous, with
a fourier transform g̃(p) which vanishes only algebraically as
p → ∞. The “perturbative” endpoint corrections of the Euler-
Maclaurin formula can be used to account for these algebraic
terms in a systematic way. But there is no point in making
endpoint corrections beyond the error in the bulk contribution,
the latter being of magnitude f̃(2π

h ) + f̃(− 2π
h ).

III. EXAMPLE INTEGRALS

In this section we will analyze the behaviour of some simple
cases which are similar to typical ground state normalization
integrals.

A. e−x2

Consider first the ground state of the harmonic oscillator,
f(x) = e−x2

, in which case

f̃(p) =
√

π e−p2/4. (12)

Hence we have∫ ∞

−∞
dx e−x2

=
∞∑

m=−∞
he−(mh)2−

√
4π e−π2/h2−· · · . (13)

In practise we must approximate the infinite sum by a finite
one,∫ ∞

−∞
dx e−x2

= h + 2h
M∑

m=1

e−(mh)2

+ 2he−(M+1)2h2
+ · · · −

√
4π e−π2/h2 − · · · .

If we make h too small the first correction term (on the second
line above) becomes too large. If we make h too large the sec-
ond correction term becomes too large. I.e., the optimal choice
of h occurs approximately when e−(M+1)2h2

= e−π2/h2
,

h =
√

π

M + 1
. (14)

This leads to an expected error of order

ε(M) = e−π(M+1). (15)

I.e., to evaluate this integral numerically to P decimals accu-
racy one must choose

M + 1 ≥ log 10
π

P ≈ 0.73 P. (16)

B. e−x2n

In more generality consider f(x) = e−x2n

with n a positive
integer. In this case the integral is

Kn ≡
∫ ∞

−∞
dx e−x2n

=
1
n

Γ
(

1
2n

)
. (17)

We use the saddle point method to estimate its Fourier
transform

f̃(p) =
∫ ∞

−∞
dx e−x2n+ipx ≡

∫ ∞

−∞
dx eφ(x,p). (18)

The saddle point equation becomes

φ′(xs, p) = −2nx2n−1
s + ip = 0, (19)

with 2n − 1 solutions

xs = eiπ(4k+1)/(4n−2)
( p

2n

)1/(2n−1)

, k = 0, 1, . . . 2n − 2.

(20)
The two most relevant saddle points2 occur for k = 0 and
n− 1, at which the real part of the exponent φ(x, p) is (when
p = 2π/h)

Re φ(xs, p) = −(2n − 1) sin
(

π

4n − 2

) ( π

nh

)2n/(2n−1)

≡ an h−2n/(2n−1). (21)

I.e., the leading error due to a finite stepsize h is of magnitude
eRe φ(xs,p) = e−anh−2n/(2n−1)

(apart from a prefactor of less
importance). On the other hand, including only the M first
terms of the sum leads to an error of magnitude e−[(M+1)h]2n

.
For a given M we should choose h to balance these errors,
i.e.

h = bn (M + 1)−(1−1/2n)
, (22)

with bn =
(

π
n

)1/2n
[
(2n − 1) sin

(
π

4n−2

)](2n−1)/4n2

. This
leads to an error of magnitude

ε(M) = e−cn(M+1), (23)

with cn = π
n

[
(2n − 1) sin

(
π

4n−2

)]1−1/2n

. I.e., to evaluate
the integral numerically to P decimals accuracy one must
choose

M + 1 ≥ log 10
cn

P ≈ (0.12 + 0.467 n) P. (24)

where the numerical approximation is very good for n ≥ 2.

C. e−(x2−a2)2

Finally consider f(x) = e−(x2−a2)2

. In this case

I(a) =
∫ ∞

−∞
dx e−(x2−a2)2

= a e−
1
2 a4

[
1√
2

K 1
4
( 1
2a4) + π I 1

4
( 1
2a4)

]
→

{
2−1Γ (1/4) as a → 0,√

π/a as a → ∞. (25)

The saddle point approximation to the Fourier transform

f̃(p) =
∫ ∞

−∞
dx e−(x2−a2)2+ipx ≡

∫ ∞

−∞
dx eφ(x,p), (26)

leads to the saddle point equation

φ′(xs, p) = −x3
s + a2 xs + i

p

4
= 0. (27)

We introduce
xs = y +

a2

3y
, (28)

which leads to a quadratic equation for y3,

y3 − i
p

4
+

a6

27y3
. (29)

2The deformation of the integration path so that it passes through these
saddle points is an interesting exercise[6]
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It is convenient to rewrite p so that (p/8) =
(
a/
√

3
)3

sinh 3η.
Then the solutions for equation (29) becomes

y3 = i

(
p

8
±

√
p2

64
+

a6

27

)
=

(
a√
3

e±(η+iπ/6)

)3

. (30)

I.e.,

y =
a√
3

e±(η+iπ/6),
a2

3y
=

a√
3

e∓(η+iπ/6),

which in both cases of ± leads to the solution

xs =
2a√

3
cosh (η + iπ/6) . (31)

10−300
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10−100
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ε(M)
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(x2 − a2)2
Obtained ε(M)

x4

Obtained ε(M)

x2
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Fig. 2 Predicted (lines) and obtained (points) precision as function of
M , for the three example integrals discussed in the text. In order from
top to bottom:

R
dx e−(x2−a2)2 ,

R
dx e−x4

,
R

dx e−x2
. The number

of function evaluations in each case is M + 1. As can be seen, the
obtained precision agrees well with the theoretical estimate.

There are two more ways to take the cube root. One of them
leads to an equally relevant saddle point,

xs =
2a√

3
cosh (η + i5π/6) , (32)

while the last one is irrelevant. The real part of the exponent
at the relevant saddle points is

Re φ(xs, η) = −4
3
a4 sinh2 η cosh 2η. (33)

This provides an error estimate in parametric form: If we
choose a finite stepsize

h =
√

27 π

4 a3 sinh 3η
, (34)

the corresponding error will be of magnitude

ε(h) ≈ e−
4
3 a4 sinh2 η cosh 2η. (35)

The error caused by summing over only a finite range
of x-values, 0 ≤ xmin ≤ x ≤ xmax, should be cho-
sen to be of the same magnitude as ε(h). I.e., with s ≡

(4/3) a4 sinh2 η cosh 2η,

xmax = a
(
1 +

√
s
)1/2

, (36)

xmin =
{

0 if s ≥ 1,
a (1 −√

s)1/2 otherwise.
(37)

I.e., we must use M = (xmax − xmin)/h evaluation steps in
the numerical integration.

IV. WAVEFUNCTION NORMALIZATION INTEGRALS

Our investigation of the example integrals gives us con-
fidence that we can obtain a fairly good a priori estimate
of the obtainable precision ε(M) at a given number M of
discretization steps, at least asymptotically for large M . For
this we need to (i) estimate the behaviour of the Fourier
transform, ψ̃2(p), of the integrand at large p = 2π/h (to find
the obtainable accuracy ε(h) at a given stepsize h), and (ii)
estimate how the integrand decays away from its maxima (to
find the required x-range of summation for the same accuracy).

Both quantities can be obtained to reasonable accuracy by
use of the WKB approximation.

A. WKB estimates of wavefunctions for x2n potentials
For large x an estimate of solutions to the eigenvalue

problems
−ψ′′ +

(
x2n − E

)
ψ = 0, (38)

can be written in the form3

ψ(x) = exp
(
− ∫ x

x0
dt
√

t2n − E
)

≈ C exp
(
− 1

n+1x
√

x2n − E
)
,

where x2n
0 = E, and

C = exp
{

n

n + 1

∫ ∞

x0

dt
E√

t2n − E

}

= exp
{

B( 1
2 , n−1

2n )
2(n + 1)

E(n+1)/2n

}

= exp
{

π

2
tan

( π

2n

) (
N +

1
2

)}
, (39)

with B(x, y) = Γ(x) Γ(y)/Γ(x + y) the Beta function. We
have evaluated the WKB integral using partial integration, and
let x → ∞ in the remainder. Further, in the last equality
we have assumed E ≡ EN to be eigenvalue number N , and
evaluated it by the WKB approximation.

We use this approximation to estimate the Fourier transform,

ψ̃2(p) ≡
∫

dx ψ(x)2 eipx, (40)

by the saddle point method. The saddle point equation can be
written

x2n
s = E − (p/2)2, (41)

giving∣∣∣ ψ̃2(p)
∣∣∣ ≈ C2 exp

(
n

n+1Re (ipxs)
)

= C2 exp
{
− n

n+1 sin
(

π
2n

)
p

[
(p/2)2 − E

]1/2n
}

.

(42)

3We ignore the algebraic prefactor (x2n − E)−1/4.
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Thus, to compute the normalization integral to P decimals
precision one must choose p = 2π/h so that the right hand
side of (42) becomes equal to 10−P (or smaller). The value
of h is best found numerically. But note that one at least must
have (p/2)2 > E, or

h−1 > π−1E1/2.

For large x the normalization integrand behaves like

ψ(x)2 ≈ exp
(
−2

∫ x

0

dt
√

t2n − E

)

≈ C2 exp
(
− 2

n+1x
√

x2n − E
)

. (43)

Thus, to compute the normalization integral to P decimals
precision one should integrate to a value x = xmax for which
the right hand side of (43) becomes less than 10−P . The value
of xmax is best found numerically. But note that one at least
must have x2n

max > E, or

xmax > E1/2n.

This provides a lower limit on the number of integration steps,

M + 1 =
xmax

h
>

1
π

E(n+1)/2n ≈ N + 1
2∫ 1

−1
du

√
1 − u2n

. (44)

Here we have assumed E ≡ EN to be eigenvalue number N ,
and used the WKB approximation to estimate its value. Since
N is the number of nodes in the eigenfunction, the inequality
(44) quite reasonably says that the number of evaluation points
must be larger than the number of oscillations.

B. Ground state wavefunction of x4 potential

Specializing the results of the previous section to the ground
state of the x4-potential, and approximating E0 by zero, one
finds from equation (42) that∣∣∣ψ̃2(p)

∣∣∣ ≈ e−p3/2/3, (45)

and from equation (43) that

ψ(x)2 ≈ e−2x3/3. (46)

From this one deduces that the optimal choices for h = 2π/p
and xmax = Mh are so that

e−
1
3 (2π/h)3/2 ≈ e−

2
3 (M+1)3h3

.

I.e.,

h = 21/9π1/3 (M + 1)−2/3 ≈ 1.58 (M + 1)−2/3. (47)

The corresponding estimated error becomes

ε(M) = e−
1
3 24/3π (M+1) ≈ e−2.64 (M+1). (48)

I.e., if one wants to compute the normalization integral to
P decimals precision one has to choose

M + 1 =
3 ln 10
24/3π

P ≈ 0.87 P. (49)

102

103

104

105

102 103

t [ms]

Pest

E0

E100

EWW

Fig. 3 This figure displays the computer time (measured in mil-
liseconds) required to compute some normalization integrals to P
decimals estimated precision. The cases considered are (i) the ground
state wavefunction of the x4-potential (E0), (ii) the 100th excited state
wavefunction of the x4-potential (E100), and (iii) the ground state
wavefunction of the (x2 − 1)2-potential (EWW) with s = 1/100.

C. Excited state wavefunctions of x4 potential
The main effect of having highly excited states EN lies

in the extra factors C2 in the error estimates, with C found
in equation (39). Clearly C becomes large for large N . To
account for this factor we must replace 10−P by C−2 10−P

in the error analysis. I.e., make the replacement

P log 10 → P log 10 + π tan
( π

2n

) (
N +

1
2

)
(50)

in the expressions like (49). There are also E-dependent
corrections to the remainding factors, but they are best treated
numerically.

D. Ground state wavefunction of (x2 − 1)2 potential
We next consider the lowest even parity eigenstate of

−s2 ψ′′ + (x2 − 1)2 ψ = ε ψ, (51)

with s is small and positive. By WKB analysis one finds that
the solution behaves like

ψ(x) ∼ e−(x−1)2(x+2)/3s, (52)

(up to an algebraic prefactor) in the region of interest (Rex >
0, |(x − 1)2(x + 2)/3s| 
 1). We again estimate Fourier
transform of ψ(x)2 by the saddle point method, assuming the
relevant saddle point to be in a region where the approximation
(52) is valid. The saddle point equation,

φ′(x, p) = − d
dx

[
2
3s

(x − 1)2(x + 2) − ipx

]
= 0, (53)

has a solution consistent with this assumption,

xs = (1 + i
ps

2
)1/2. (54)

The corresponding exponent is

φ(xs, p) =
4
3s

[
(1 + ips/2)3/2 − 1

]
≈ − 1

3s
(1 − i)(ps)3/2,

(55)
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where the last equality is valid for ps 
 1. To evaluate the
integral to P decimals precision one must choose p = 2π/h
so that φ(xs, p) = −P log 10 (or smaller). For very large P
one may use the last approximation in equation (55) to find

h ≈ 2π

(3 log 10)2/3
s1/3 P−2/3 ≈ 1.73 s1/3 P−2/3, (56)

otherwise it is simplest to determine h numerically. Further,
to evaluate the integral to P decimals precision one must add
contributions from the (positive) x-range where

ψ(x)2 ≈ e−2(x−1)2(x+2)/3s > 10−P . (57)

I.e., we must take xmax to be the largest solution to the equation
(x − 1)2(x + 2) = (3/2) log 10 sP . For very large P the
solution becomes

xmax ≈ (
3
2 log 10

)1/3
s1/3 P 1/3 ≈ 1.51 s1/3 P 1/3. (58)

Hence the number of required function evaluations again grow
asymptotically for large P like

M + 1 =
xmax

h
≈ 0.87 P, (59)

cf. equation (49).
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Fig. 4 These figures display the difference between the actually
obtained precision Pobt and the estimated one Pest, for some
normalization integrals, with precisions measured in decimal digits.
The cases considered are (i) the ground state wavefunction of the
x4-potential (E0), (ii) the 100th excited state wavefunction of the
x4-potential (E100), and (iii) the ground state wavefunction of the
(x2 − 1)2-potential (EWW) with s = 1/100.
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